A ne jamais oublier Flashcards

1
Q

coef bino (n,k) =

A

coef bino (n,n-k)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

coef bino (n,k)*k =

A

coef bino (n-1,k-1)*n

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

coef bino (n, k-1) + (n,k) =

A

coef bino (n+1,k)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

(f^(-1))’ =

A

1 / f’ ¤ f^(-1)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

tan (x) -1 equi en 0 à

A

2(x-pi/4)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

sin x - x equi en 0 à

A

-x^(3)/6

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

ln(1+x) - x equi en 0 à

A

-x^(2)/2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

terme général suite arithmétique

A

u(n)=u(p)+(n-p)r

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

somme suite arithmétique

A

S=(nombre de termes/2) *(premier terme+dernier terme)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

terme général suite géomé1trique

A

u(n)=u(p)*q^(n-p)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

somme suite géométrique

A

S=premier terme (1-q^(nombre de termes)/1-q) (si q est différent de 1)
sinon S=premier terme
nombre de termes

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

(ln (x))^n =

A

n*ln(x)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

relations entre racines d’un trinôme

R2=

A

R2=c/R1*a

R2=-(R1+b/a)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

primitive de 1/t^(a)

A

t^(-a+1)/(-a+1)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Série de riemann converge ssi

A

Série 1/n^a converge ssi a>1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Critère de Riemann (en fonction de a)

lim n^(a)*u(n) =… alors

A

si lim n^(a)*u(n)=0 avec a>1 alors série des u(n) converge

si lim n^(a)*u(n)= +infini avec a<=1 alors série des u(n) diverge

17
Q
Critère de d'Alembert    U(n) >>>>>> 0
lim u(n+1)/u(n) = l (evt + infini)
A

si l<1 alors lim u(n) =0
si l>1 alors lim u(n) = + infini
si l=1, on ne peut rien dire

18
Q

f est paire (resp impaire) alors primitive de f est

A

impaire (resp paire)

19
Q

dérivée de cos (resp sin)

A

-sin (t) (resp cos (t) )

20
Q

primitive de ln(t)

A

t*ln(t) - t

21
Q

Exp (i*pi) =

A

=-1

22
Q

Exp (i*pi/2) =

A

=i

23
Q

Exp (2ik*pi) =

A

=1