A* Finish With A Bang Flashcards
1
Q
Integration of ln(x)
A
Use substitution
-> 1•ln(x)
2
Q
Parametric to Cartesian involving trig
A
Use identities
•sin ² x + cos ² x = 1
- 1 + cot ² x = cosec ² x
- tan ² x + 1 = sec ² x
3
Q
What to do if stationary point is y=x during implicit differentiation
A
Put y=x into undifferentiated equation and find coordinates of stationary points
4
Q
Integrate 2 ˣ
A
2 ˣ
——— + C
ln(2)
5
Q
Differentiate 2 ˣ
A
2 ˣ•ln(2)
6
Q
Integrate sin²x
A
- use cos2x = 1-2sin ² x
- rearrange
- integrate
7
Q
Integrate cos²x
A
- use cos2x = 2cos ² x-1
- rearrange
- integrate
8
Q
Integrate cot²x
A
- use 1 + cot²x = cosec²x
- rearrange
- integrate
9
Q
3 standard patterns
A
For e • f’(x)eᶠ⁽ˣ⁾ -> let y= eᶠ⁽ˣ⁾
For ln • f’(x)/f(x) -> let y= ln(f(x))
For non liner powers
• f’(x)[f(x)] ⁿ -> let y= [f(x)] ⁿ⁺¹
10
Q
Area of a parallelogram
A
Area = absinC
Twice area of triangle