8. Probability Distributions as Modeling Tools Flashcards
1
Q
X ~ Bernoulli(p)
A
- P(success) = p
- Mean = p
- Variance = p * (1 - p)
1
Q
X ~ Geometric(p)
A
- P(success) = p
- f(x) = (1 - p)^x * (p)
- Mean = (1 - p) / p
- Variance = (1 - p) / (p^2)
2
Q
X ~ Binomial(n, p)
A
- P(success) = p
- f(x) = (n choose x) * (p)^x * (1 - p)^(n-x)
- Mean = np
- Variance = np * (1 - p)
3
Q
X ~ Poisson(lambda)
A
- f(x) = e^(-lambda) * lambda^x / x!
- Mean = lambda
- Variance = lambda
4
Q
X ~ Exp(lambda)
A
- f(x) = lambda * e^(-lambda * x)
- F(x) = 1 - e^(-lambda * x)
- Mean = 1 \ lambda
- Variance = 1 \ lambda^2
5
Q
X ~ Unif(a, b)
A
- Mean = (a + b) / 2
- Variance = (a - b)^2 / 12