7.0 Chemotherapy Flashcards
Aciclovir [acyclovir]
- <b>Class</b> = Purine analogue<br></br>- <b>Target</b> = Viral DNA polymerase<br></br>- <b>Mechanism</b> = Lacks the 3-OH group required for additional nucleotide polymerisation<br></br>- <b>Steps</b>:<br></br>1) Taken up by cell and monophosphorylated by herpes virus thymidine kinase<br></br>2) Cellular enzymes then convert it to triphosphate<br></br>3) Aciclovir triphosphate <b>competitively + permanently inhibits with viral DNA pol</b><br></br>4) Also incorporated into growing chain but cannot continue adding more nucleotides because it aciclovir lacks the 3- OH group<br></br>- <b>Info</b>:<br></br>Selective for viral infected cells because:<br></br>1) Only virally infected cells have thymidine kinase (for monophosphorylation)<br></br>2. Drug preferentially binds to virally encoded DNA pol. (30x stronger bond on viral cf. host)<br></br>-<b>Resistance</b>:<br></br>Viral thymidine kinase changes substrate sensitivity thus does not monophosphate acyclovir
Amantadine
- <b>Class</b> = Antiinfluenza drug<br></br>- <b>Target</b> = <br></br>1) M2 channel protein<br></br>2) HA processing<br></br>- <b>Mechanism</b> = <br></br>1) Blocks function of M2 channel → prevents uncoating of virus<br></br>2) Interferes with HA processing → ↓ binding to host (HA needed to bind to sialic acid)<br></br>- <b>Steps</b>: <br></br>- <b>Info</b>:<br></br>Used as prophylaxis or anti-influenza A<br></br>Not effective against influenza B
Amoxicillin
- <b>Class</b> = Antibiotic (beta-lactam)<br></br>- <b>Target</b> = Cell wall biosynthesis<br></br>- <b>Mechanism</b> = Inhibits Peptidoglycan transpeptidase<br></br>- <b>Steps</b>: <br></br>1) PG transpeptidase mistakes amoxicillin for an uncrossed PG chain terminatinf in D-Ala-D-Ala<br></br>2) Active site serine attacks the beta lactam ring of the antibiotic → acyl-enzyme intermediate in which <b>the beta-lactam ring has opened</b><br></br>3) This resulting covalent penicilloyl enzyme is very slow to hydrolyse → ↓↓↓ further PG synthesis<br></br>4) Causes cell lysis because of continued activity of autolysins<br></br>- <b>Info</b>:<br></br>Only proliferating cells in which autolysins are active are sensitive to beta lactam antibiotics<br></br>Often combined with <b>clavulanic acid</b> (beta-lactamase inhibitor)
Amphotericin B
- <b>Class</b> = Polyene (antifungal)<br></br>- <b>Target</b> = Ergosterol in fungal plasma membrane<br></br>- <b>Mechanism</b> = Binds to ergosterol → pore formation<br></br>- <b>Steps</b>:<br></br>Preferentially binds to egosterol (in fungal membranes) as opposed to cholesterol (in human plasma membrane) → selectivity<br></br>Pore formation → ion + macromolecule leakage <br></br>- <b>Info</b>:<br></br>Ergosterol is also found in Leishmania (parasite)
Anastrozole
- <b>Class</b> = Hormone therapy (anticancer)<br></br>- <b>Target</b> = Aromatase<br></br>- <b>Mechanism</b> = Inhibitor<br></br>- <b>Steps</b>:<br></br>• Aromatase = enzyme in the oestrogen biosynthetic pathway that converts androgen precursor to estradiol<br></br>• Inhibition of this enzyme ⟶ ↓ oestogen <br></br>- <b>Info</b>:<br></br>Used instead of, or after, treatment with tamoxifen<br></br>Also used in post-menopausal women with breast CA to prevent formation of oestrogens at peripheral sites such as muscle and fat
Artemisinin
- <b>Class</b> = Antimalarial <br></br>- <b>Target</b> = -<br></br>- <b>Mechanism</b> = Less well known <br></br>- <b>Steps</b>: <br></br>?Production of reactive oxygen radicals using peroxide bridge?<br></br>?Inhibition of parasite electron transport chain?<br></br>?Inhibits parasite SERCA pump?<br></br>- <b>Info</b>:<br></br><b>Rapid action</b><br></br>Also inhibits development of oocytes in mosquitos
Cephalosporin
- <b>Class</b> = Antibiotic (beta-lactam)<br></br>- <b>Target</b> = Cell wall biosynthesis<br></br>- <b>Mechanism</b> = Inhibits Peptidoglycan transpeptidase<br></br>- <b>Steps</b>: <br></br>1) PG transpeptidase mistakes cephalosporin for an uncrossed PG chain terminatinf in D-Ala-D-Ala<br></br>2) Active site serine attacks the beta lactam ring of the antibiotic → acyl-enzyme intermediate in which <b>the beta-lactam ring has opened</b><br></br>3) This resulting covalent penicilloyl enzyme is very slow to hydrolyse → ↓↓↓ further PG synthesis<br></br>4) Causes cell lysis because of continued activity of autolysins<br></br>- <b>Info</b>:<br></br>Only proliferating cells in which autolysins are active are sensitive to beta lactam antibiotics
Cetuximab
- <b>Class</b> = Monoclonal antibody (anticancer)<br></br>- <b>Target</b> = EGFR<br></br>- <b>Mechanism</b> = Inhibition<br></br>- <b>Steps</b>: <br></br>EGFR = RTK<br></br>Binding of specific ligand ⟶ conformational changes ⟶ ↑ RTK activity ⟶ ↑ cell activity such as proliferation and differentiation<br></br>Abnormal EGFR expression involved in many malignancies<br></br>Inhibition achieved by preventing ligand binding with anti-EGFR antibody<br></br>- <b>Info</b>:<br></br>Human-mouse chimeric monoclonal antibody<br></br>Cetuximab can reverse the resistance of colorectal cancers to topoisomerase inhibitors<br></br>Used in combination with irinotecan (top. inhibitor)
Chloramphenicol
- <b>Class</b> = Antibiotic<br></br>- <b>Target</b> = 50S ribosomal subunit<br></br>- <b>Mechanism</b> = Blocks aminoacyl-tRNA interaction with P site of peptidyl transferase centre<br></br>- <b>Steps</b>: <br></br>- <b>Info</b>:<br></br>Bacteriostatic
Chloroquine
- <b>Class</b> = Antimalarial<br></br>- <b>Target</b> = Haem polymerisation by plasmodium spp<br></br>- <b>Mechanism</b> = Inhibits formation of hemozoin<br></br>- <b>Steps</b>: <br></br><b>Events during Plasmodium erythrocytic cycle:</b><br></br>-Plasmodium in RBCs use haemoglobin as nitrogen source ⟶ accumulation of heme<br></br>-Could accumulate to toxic levels (up 200-500mM)<br></br>- This causes production of reactive oxygen species ⟶ harming the parasite<br></br>- Parasites ∴ polymerise toxic heme ⟶ non-toxic hemozoin (in food vacuole)<br></br><b>Mechanism of Chloroquine:</b><br></br>Inhibits formation of hemozoin via 2 methods:<br></br>1. Inhibiting polymerase<br></br>2. Complexation of heme<br></br>It also ↑ pH in food vacuole <br></br>- <b>Info</b>:<br></br>-<b>Resistance</b>:<br></br>Parasites achieve resistance by efflux of cholorquine out of food vacuoles
Ciprofloxacin
- <b>Class</b> = Antibiotic (fluoroquinolone)<br></br>- <b>Target</b> = Topoisomerases (Type II)<br></br>- <b>Mechanism</b> = Inhibits <b>DNA gyrase</b> and topo IV (both type II topoisomerases)<br></br>- <b>Steps</b>: <br></br>1) Type II topoisomerases cleave both strands of DNA in an ATP dependent manner (DNA gyrase can supercoild DNA, Topo IV cannot)<br></br>2) Fluoroquinolones affect double strand cleavage/re-ligation cycle<br></br>3) Build up of complexes → effect on replication forks → cell death<br></br>- <b>Info</b>:<br></br>Used in UTI, osteomyelitis, gastroenteritis
Cisplatin
- <b>Class</b> = Platinum compound (anticancer)<br></br>- <b>Target</b> = N7 atoms of guanine and adenine in tumour cells<br></br>- <b>Mechanism</b> = <br></br>Covalently binds DNA ⟶ <b>intrastrand cross-linking</b> ⟶ prevents DNA replication<br></br>- <b>Steps</b>: <br></br>• Only active in cis form<br></br>• Small size ⟶ crosslinking occurs between two neigbouring pGpG (intrastrand crosslinking)<br></br>• This induces a major bend in dsDNA ⟶ changes in major groove<br></br>• This (along with physical block provided by platinum adduct) ⟶ inhibition of DNA pol. ⟶ inhibition of DNA replication<br></br>- <b>Info</b>:<br></br>Used in sarcomas, some carcinomas (sc lung cancer, ovarian), lymphomas and germ cell tumours (large improvement in testicular CA treatment)<br></br><b>IV administration</b> (no bioavailability if oral)<br></br>Inactivated by reastions with SH groups in glutathione and metallothioneins<br></br>- <b>Side effects</b> = renal toxicity + bone marrow suppression
Clavulanate
-<b>Class</b>: Beta-lactamase inhibitor<br></br>-<b>Target</b>: Beta-lactamase<br></br>-<b>Mechanism</b>: forms a slowly hydrolysing acyl enzyme intermediate with Beta-lactamase to inhibit the enzyme - suicide substrate<br></br><br></br>NO EFFECT ON B TYPE BETA LACTAMASE<br></br>-<b>Info</b>:<br></br>-used with amoxicillin to overcome Beta-lactamase induced resistance to Beta-lactam antibiotics. The combination of amoxicillin with clavulanate is Augmentin/co-amoxiclav
Co-trimoxazole
”- <b>Class</b> = Combination drug (sulfamethoxazole + trimethoprim)<br></br>- <b>Target</b> = Folate synthesis (DHPS + DHFR)<br></br>- <b>Mechanism</b> = <br></br>Sulfamethoxazole → inhibits DHPS<br></br>Trimethoprim → inhibits DHFR<br></br>- <b>Steps</b>: <br></br>- <b>Info</b>:<br></br>Link with Steven Johnson syndrome<div><br></br></div><div><img></img></div>”
Cyclophosphamide
- <b>Class</b> = Nitrogen mustard (anticancer)<br></br>- <b>Target</b> = DNA<br></br>- <b>Mechanism</b> = <b>Covalently</b> binds DNA and prevents DNA replication + gene expression<br></br>- <b>Steps</b>: <br></br>Needs to be metabolised by cytochrome p450 to be activated (cyclophosphamide → phophoramide)<br></br>1) Binds to DNA + causes alkylation<br></br>2) Causes <b>cross-linking</b><br></br>3) Can cause CG → AT transition<br></br>4) Basically prevents effective DNA replication and gene expression<br></br>- <b>Info</b>:<br></br>Oral admin<br></br>Most commonly used alkylating agent<br></br>Broad application (lymphoid/ breast/ lung/ ovary CA)<br></br>Used with other drugs to reduce resistance
Daunomycin
- <b>Class</b> = Antibiotic (polycyclin)<br></br>- <b>Target</b> = DNA template<br></br>- <b>Mechanism</b> = Non-covalent binding to DNA template<br></br>- <b>Steps</b>: <br></br>Inserts between adjacent base pairs<br></br>Intercalation → affects dimensions of major and minor grooves ⟶ affects DNA/RNA pol interactions ⟶ prevention of normal replication and transcription<br></br>Prevents DNA from being resealed<br></br><br></br>- <b>Info</b>:<br></br>Planar structure
D-cycloserine
- <b>Class</b> = Antibiotic<br></br>- <b>Target</b> = Cell wall biosynthesis<br></br>- <b>Mechanism</b> = Mimics D-ala<br></br>- <b>Steps</b>: <br></br>1) Inhibits L-alanine racemase<br></br>2) Inhibits D-ala D-ala synthase<br></br>3) Inhibits ligase (that joins to UDP-NAG)<br></br>- <b>Info</b>:<br></br>2nd class drug anti-TB
Erlotinib
- <b>Class</b> = Small molecule inhibitor (quinazoline derivative)<br></br>- <b>Target</b> = EGFR<br></br>- <b>Mechanism</b> = Inhibition<br></br>- <b>Steps</b>:<br></br>EGFR = RTK<br></br>Inhibition → ↓ proliferation and division <br></br>- <b>Info</b>:<br></br>Orally active<br></br>Potent<br></br>Selective<br></br>Toxicity → skin rashes + diarrhoea<br></br>Good in pancreatic and advanced NSCLC
Erythromycin
- <b>Class</b> = Antibiotic (Macrolide)<br></br>- <b>Target</b> = 50s ribosomal subunit<br></br>- <b>Mechanism</b> = Binds to polypeptide export tunnel on 50S → prevents elongation<br></br>- <b>Steps</b>: <br></br>1) Interacts with 23S rRNA in export tunnel<br></br>2) Allows 6-8 oligopeptidyl-tRNA build up before elongation is blocked<br></br>3) Causes premature termination<br></br>- <b>Info</b>:<br></br>Bacteriostatic or bacteriocidal (depends on dose + bacterial species/density)<br></br>-<b>Resistance mechanism:</b><br></br>-methylation of adenine in 23S rRNA of 50S subunit by N-methyltransferase to prevent binding of macrolide antibiotics.
Etoposide
- <b>Class</b> = Topoisomerase II inhibitor<br></br>- <b>Target</b> = Topoisomerase II (human)<br></br>- <b>Mechanism</b> = Inhibition<br></br>- <b>Steps</b>: <br></br>Inhibition of type II topoisomerase in tumour cells ⟶ torsional stress on the DNA during DNA replication and transcription ⟶ genomic instability and impaired tumour cell proliferation <br></br>- <b>Info</b>:<br></br>Used in the treatment of lung cancer, testicular cancer, lymphoma
Fansidar
”- <b>Class</b> = Combination drug (sulfadoxin + Pyrimethamine)<br></br>- <b>Target</b> = Folate synthesis (DHPS + DHFR)<br></br>- <b>Mechanism</b> = <br></br>Sulfadoxin → inhibits DHPS<br></br>Pyrimethamine → inhibits DHFR<br></br>- <b>Steps</b>: <br></br>- <b>Info</b>:<div><br></br></div><div><img></img></div>”
Fluconazole
- <b>Class</b> = Triazole (antifungal)<br></br>- <b>Target</b> = Enzymes involved with ergosterol synthesis<br></br>- <b>Mechanism</b> = Inhibition <br></br>- <b>Steps</b>: <br></br>↓ ergoesterol → alters fluidity of membrane → alters permeability + activity of membrane associated enzymes<br></br>- <b>Info</b>:<br></br>-<b>Resistance</b>:<br></br>1) Alterations in the amount of enzymes involved with ergosterol synthesis<br></br>2) Efflux
Fosfomycin
- <b>Class</b> = Antibiotic<br></br>- <b>Target</b> = Cell wall biosynthesis<br></br>- <b>Mechanism</b> = Mimics phosphoenolpyruvate<br></br>- <b>Steps</b>: <br></br>1) Inhibits pyruvryl transferase<br></br>- <b>Info</b>:
Fusidic acid
- <b>Class</b> = Antibiotic <br></br>- <b>Target</b> = Elongation factors<br></br>- <b>Mechanism</b> = Inhibits protein synthesis<br></br>- <b>Steps</b>: <br></br>1) Binds to and inhibits elongation factor G<br></br>- <b>Info</b>:
Goseraline
- <b>Class</b> = Hormone therapy (anticancer)<br></br>- <b>Target</b> = GnRH receptor<br></br>- <b>Mechanism</b> = GnRH analogue → biochemical castration<br></br>- <b>Steps</b>:<br></br>• GnRH ⟶ ↑ LH + FSH ⟶ ↑ testosterone secretion<br></br>• Testosterone can stimulate prostate cancer<br></br>• Normal secretion of GnRH is pulsatile<br></br>• Continuous GnRH ⟶ immediate ↑ LH + FSH ⟶ complete inhibition of their release<br></br>Goseraline effectively does this (causes biochemical castration) <br></br>- <b>Info</b>:
Imatinib
- <b>Class</b> = Small molecule inhibitor (anticancer)<br></br>- <b>Target</b> = BCR-ABl<br></br>- <b>Mechanism</b> = Inhibition<br></br>- <b>Steps</b>:<br></br> BCR-ABl = RTK<br></br>- <b>Info</b>:<br></br>• Most chronic myeloid leukaemia patients carry the philadelphia chromosome, resulting from a reciprical exchange of the long arms of chromosomes 9 and 22 - this generates a fusion gene, leading to a BCR-ABL protein with tyrosine kinase activity. Imatinib blocks this activity to prevent excessive proliferation<br></br>• Can also inhibit c-kit tyrosine kinase activity, the encoding gene of which is overexpressed in gastrointestinal stomal tumours (GISTs)<br></br>Marketed as Gleevec
Isoniazid
- <b>Class</b> = Antimicrobial<br></br>- <b>Target</b> = Mycolic acid synthesis<br></br>- <b>Mechanism</b> = Inhibition of mycolic acid synthesis<br></br>- <b>Steps</b>:<br></br>M.tuberculosis has significant intrinsic resistance to many antimicrobial compounds compared to other bacteria due to the high mycolic acid content in the lipid bilayer<br></br>- <b>Info</b>:<br></br>-first line treatment for tuberculosis against M. tuberculosis.<br></br>-other bacteria, which do not feature mycolic acid, have a high intrinsic resistance to this drug
Leucovorin
- <b>Class</b> = Folate source<br></br>- <b>Target</b> = -<br></br>- <b>Mechanism</b> = Provides a metabolic equivalent to folate<br></br>- <b>Steps</b>: <br></br>• Can be converted to reduced folic acid derivatives (e.g. tetrahydrofolate) ∴ has a vitamin activity equivalent to folic acid<br></br>• ∵ does not rely on DHFR, it is unaffected by methotrexate<br></br><br></br>- <b>Info</b>:<br></br>Selectively is achieved ∵ proliferating tumour cells have much higher tetrahydrofolate requirement, thus leucovorin doesn’t help them as much as it does healthy cells
Lomustine
- <b>Class</b> = Nitrosurea (anticancer)<br></br>- <b>Target</b> = DNA <br></br>- <b>Mechanism</b> = Not well understood<br></br>- <b>Steps</b>: <br></br>Cause <b>alkylation</b> and <b>carbamoylation</b><br></br>Can produce inter strand <b>cross-links</b><br></br>Bind preferentially to <b>guanine</b><br></br>- <b>Info</b>:<br></br>Oral administration<br></br>Lipophilic → good brain penetration → Important for <b>brain tumours</b><br></br>-<b>Side effects</b>:<br></br>↓WBC, ↓ Platelets + damage organs
Melarsoprol
- <b>Class</b> = Arsenic compound (anti-parasitic)<br></br>- <b>Target</b> = Lipoic acid dependent enzymes<br></br>- <b>Mechanism</b> = Inhibition<br></br>- <b>Steps</b>: <br></br>Enzymes inhibited = 2-oxo-decarboxylase and pyruvate dehydrogenase<br></br><b>Affects ATP synthesis</b><br></br>Melarsoprol = prodrug (drug = melarsan oxide)<br></br>- <b>Info</b>:<br></br>Specific for <b>Leishmaniasis</b>
Methicillin
- <b>Class</b> = Antibiotic (beta-lactam)<br></br>- <b>Target</b> = Cell wall biosynthesis<br></br>- <b>Mechanism</b> = Inhibits Peptidoglycan transpeptidase<br></br>- <b>Steps</b>: <br></br>1) PG transpeptidase mistakes methicillin for an uncrossed PG chain terminating in D-Ala-D-Ala<br></br>2) Active site serine attacks the beta lactam ring of the antibiotic → acyl-enzyme intermediate in which <b>the beta-lactam ring has opened</b><br></br>3) This resulting covalent penicilloyl enzyme is very slow to hydrolyse → ↓↓↓ further PG synthesis<br></br>4) Causes cell lysis because of continued activity of autolysins<br></br>- <b>Info</b>:<br></br>Only proliferating cells in which autolysins are active are sensitive to beta lactam antibiotics<br></br>Introduced following emergence of penicillin-resistant gram positive bacteria (has a bulky 2,6-dimethoxybenzoyl substitute to reduce the susceptibility of the intermediate enzyme to hydrolysis)<br></br><b>-Resistance mechanism:</b> <br></br><b>MecA</b> gene which (encodes a beta-lactam resistance bi-functional transpeptidase/transglycosylase)<br></br><b>Fem genes</b> (contribute to resistance by adding a cross bridge to PG strands, which allows PG to act as a better substrate for MecA transpeptidase)
Methotrexate
”- <b>Class</b> = Folic acid antagonist<br></br>- <b>Target</b> = DHFR (dihydrofolate reductase)<br></br>- <b>Mechanism</b> = Inhibition<br></br>- <b>Steps</b>: <br></br>Disruption of nucleotide synthesis ⟶ disruption of DNA replication<br></br>- <b>Info</b>:<br></br>↑↑ use of methotrexate ⟶ toxicity to normal cells (leucovorin can help with this)<div><br></br></div><div><img></img></div>”