3.0 Peripheral Nervous System Flashcards

1
Q

Where does PSNS originate from?

A

Craniosacral<br></br>(CNs III, VII, IX and X + pelvic splanchnics)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Where does the SNS originate from?

A

Thoracolumbar<br></br><br></br>(T1 → L2/3)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

What neurotransmitter is the exception by not being stored in vesicles?

A

NO

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

What is the releasable pool?

A

Vesicles that are already docked to the release sites. Able to release contents very quickly (200μs)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

What is the reserve pool?

A

Vesicles that are associated with the cytoskeleton. Can augment vesicle population if more than releasable pool is needed

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

What are the different SNAREs?

A

<b>v-SNARE</b><br></br>Synaptobrevin<br></br><br></br><b>t-SNARE</b><br></br>SNAP-25<br></br>Syntaxin

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

How many α helices do the following SNAREs have?<br></br>1) Synaptobrevin<br></br>2) SNAP-25<br></br>3) Syntaxin

A

1) Synaptobrevin - 1<br></br>2) SNAP-25 - 2<br></br>3) Syntaxin - 1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

What is the core complex?

A

Complex of: <br></br>1) Synaptobrevin<br></br>2) SNAP-25<br></br>3) Syntaxin<br></br><br></br>The four α helices come together and form a leucine zipper to bring plasma membranes together

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

What is synaptotagmin?

A

<b>Ca²⁺ sensor on vesicle</b><br></br><br></br>Transmembrane region (N terminus)<br></br>Sequence homology with PKC<br></br><br></br>Binds <b>several</b> Ca²⁺ with <b>low affinity</b>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

What are synapsins?

A

Found on surface of vesicles<br></br>Link vesicle to cytoskeleton <br></br><b>Non-phosphorylated</b> → vesicles are immobile<br></br><b>Phosphorylated</b> (by PKA + CaM kinase II) → dissociation → vesicles are free to move

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

What are the symptoms of botulinum poisoning?

A
  1. Somatic muscle weakness (can lead to need for respiratory support)<br></br>2. Loss of cholinergic activity (consitipation, blurred vision, dry skin, urine retention)<br></br>3. Noradrenergic nerve actions (heart rate slowed)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

What is the mechanism of Botulinum toxin?

A
  • Preferentially effects cholinergic neurons <br></br>- Has a light chain and heavy chain<br></br>- C-terminus (heavy chain) binds ganglioside receptor (GT1b) ⟶ endocytosis of complex<br></br>- N-terminus translocates light chain from the endosomal lumen ⟶ cell cytoplasm (Does so by making a channel in endosomal membrane)<br></br>- Light chain has peptidase activity ⟶ cleaves target SNARE
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

What is the mechanism of tetanus toxin?

A
  • Does not act directly on motor neuron<br></br>- Retrogradely transported to the cell body ⟶ transfers to inhibitory interneuron ⟶ disables interneuron from releasing its transmitter ⟶ motor neuron becomes more excitable
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

What are the SNARE targets for botulinum and tetanus toxin?

A

“<div><img></img></div>”

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

What is the rate limiting step in ACh production?

A

Supply of choline

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

What protein transports ACh into vesicles?

A

VAChT (vesicular ACh transporter)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

What other neurotransmitters are found in ACh vesicles?

A

ACh + ATP (10:1)<br></br><br></br>Also some VIP sometimes

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

Whats the structure of AChE?

A

3 x tetramer of AChE bind to a tail via <b>disulphide bonds</b><br></br>Tail binds to basement membrane via <b>heparin sulphate proteoglycan</b>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

What is the mechanism of action of cholinesterases?

A

AChE + BuChE = <b>Serine hydrolases</b><br></br><br></br><b>AChE</b><br></br>2 binding sites:<br></br>1) Anionic site (contains glutamate. Binds choline)<br></br>2) Esteratic site (Contains Serine + histidine)<br></br><br></br><b>BuChE</b><br></br>Lacks anionic site therefore ↓ affinity for ACh

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

What is the structure of nAChR?

A

Pentamer<br></br>2 x α + combination of 3 other subunits (e.g. βγδ)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

What are the different muscarinic receptors?

A

Several different types. Important ones:<br></br><br></br><b>M1</b><br></br>- Location = Peripheral and central neurons<br></br>- G-protein = G₁₁/q<br></br><br></br><b>M2</b><br></br>- Location = Heart + pre-synaptic terminals<br></br>- G-protein = Gi<br></br><br></br><b>M3</b><br></br>- Location = Secretory glands + smooth muscle<br></br>- G-protein = G₁₁/q

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

What is the synthesis pathway for catecholamines?

A

Tyrosine → DOPA → Dopamine → NA → A<br></br><br></br>1) Tyrosine hyroxylase<br></br>2) Dopa decarboxylase<br></br>3) Dopamine beta-hydroxylase<br></br>4) PNMT

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q

What is the rate limiting step in catecholamine synthesis?

A

Tyrosine hydroxylase

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
24
Q

What is the ratio of NA:ATP in noradrenaline vesicles?

A

4:1<br></br>NA:ATP

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
25
Q

What transporter transports DA and NA into vesicles?

A

<b>Vesicular monoamine transporter (VMAT2)</b><br></br><br></br>H⁺ = energy source (2H⁺ extruded for every amine taken into vesicle) ← ATP dependent

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
26
Q

Which two adrenoreceptors act as auto receptors?

A

<b>α2</b><br></br>- Main one<br></br>- Activation → ↓ NA release (main effect is via G protein gated K⁺ channel<br></br><br></br><b>β2</b><br></br>- Activation → ↑ NA synthesis

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
27
Q

What are the different types of uptake for inactivation of catecholamines?

A

<b>Uptake 1</b><br></br>- Uptake into presynaptic neuron<br></br>- Affects response<br></br>- High affinity/low capacity<br></br>- Transporter = <b>NET</b><br></br>-Na+ dependent<br></br>- NA > Adr<br></br><br></br><b>Uptake 2</b><br></br>- Uptake into postsynaptic neuron<br></br>- No effect on response<br></br>- Low affinity/High capacity<br></br>- Transporter = <b>ENT (OCT3)</b><br></br>- Not Na+ dependent<br></br>- Adr > NA

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
28
Q

What enzymes are involved in metabolism of catecholamines?

A

<b>1) MAO</b><br></br>- On outer mitochondrial membrane<br></br>- MAO-A → NA, Adr, DA + 5-HT<br></br>- MAO-B → DA<br></br><br></br><b>2) COMT</b><br></br>- In liver and neuronal tissues<br></br>- Associated with uptake 2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
29
Q

What are the G-proteins coupled to the different adrenoreceptors? What are their effects?

A

“<div><img></img></div>”

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
30
Q

What are the affinities for Adr and NA at the different adrenoreceptors?

A

<b>α1</b> - NA > Adr<br></br><b>α2</b> - Adr > NA<br></br><b>β1</b> - Same<br></br><b>β2</b> - Adr > NA<br></br><b>β3</b> - Same

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
31
Q

As well as primary neurotransmitter, what transmitters are also released from:<br></br>1) Cholinergic nerves<br></br>2) Noradrenergic nerves

A

1) VIP + NO + ATP<br></br><br></br>2) ATP + Neuropeptide Y

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
32
Q

What are the purinoceptors (purinergic receptors)?

A

<b>P1</b><br></br>Adenosine > AMP > ADP > ATP<br></br>These are the adenosine receptors<br></br><br></br><b>P2</b><br></br>ATP > ADP > AMP > Adenosine<br></br>Divided into:<br></br>- 1) P2X (ligand gated ion channel)<br></br>- 2) P2Y (G-protein coupled)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
33
Q

What is the structure of P2X receptor?

A
  • Trimer of P2X subunit<br></br>- Non-selective cation channel<br></br><br></br>Important role in fertility
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
34
Q

What are the different adenosine receptors?

A

“<div><img></img></div>”

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
35
Q

Give examples of peptide neurotransmitters:

A

1) Substance P<br></br>2) VIP<br></br>3) Neuropeptide Y<br></br>4) CGRP<br></br>5) Opioids<br></br>6) Vasopressin (ADH)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
36
Q

What are different about peptide vesicles?

A

1) Much larger<br></br>2) Vesicles are further away from plasma membrane, thus require larger APs to generate a large enough ↑[Ca²⁺]i

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
37
Q

How is NO synthesised?

A

Mainly on endothelial cells and neutrons<br></br><b>Ca²⁺ dependent</b><br></br><br></br>L-arginine → NO + L-ciltrulline (enzyme = NOS)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
38
Q

What are the three types of NOS?

A

<b>1) Neuronal NOS (nNOS/NOS I)</b><br></br>CNS + NANC neurons<br></br><br></br><b>2) Inducible NOS (iNOS/NOS II)</b><br></br>Induced by macrophages etc (IFN-Y + chemokines)<br></br><br></br><b>3) Endothelial NOS (eNOS/NOS III)</b><br></br>In platelets and endothelial cells

39
Q

Mechanism of action for NO:

A

Interacts with soluble guanylyl cyclase (GC) → ↑ cGMP → activation of cGMP dependent protein kinase G → relaxation of smooth muscle (esp. blood vessels)

40
Q

How is NO inactivated?

A

1) Combined with haem in Hb<br></br>2) Oxidated to nitrite and nitrate → excreted in urine

41
Q

ADMA (asymmetric dimethyl arginine)

A
  • <b>Class</b> = -<br></br>- <b>Target</b> = Nitric oxide synthase <br></br>- <b>Mechanism</b> = Endogenous inhibitor<br></br>- <b>Steps</b>: <br></br>- <b>Info</b>:<br></br>• equipotent to synthetic L-NMMA<br></br>• its concentration is increased in hypercholesterolaemia, aenemia and renal failure
42
Q

Alpha-latrotoxin

A
  • <b>Class</b> = Toxin<br></br>- <b>Target</b> = Neurexins (transmembrane proteins on plasma membrane of nerves)<br></br>- <b>Mechanism</b> = Causes massive release of ACh<br></br>- <b>Steps</b>: <br></br>Bind to neurexins ⟶ formation of Ca²⁺ channels ⟶ massive release of ACh<br></br>- <b>Info</b>:<br></br>From black widow spider
43
Q

alpha-methyldopa [methyldopa]

A
  • <b>Class</b> = Precursor to false transmitter<br></br>- <b>Target</b> = -<br></br>- <b>Mechanism</b> = Becomes false transmitter α-methylnoradrenaline<br></br>- <b>Steps</b>: <br></br>• α-methyldopa is taken into noradrenergic nerve ending<br></br>• Converted by DDC and DBH ⟶ α-methyldopamine and α-methylnoradrenaline<br></br>• α-methylnoradrenaline is stored in vesibles ⟶ release in place of NA<br></br>• α-methylnoradrenaline = false transmitter<br></br>(Less active than NA on α1 but more active on on α2 ∴ less vasoconstriction following SNS stimulation)<br></br>- <b>Info</b>: <br></br>Functions as an anti-hypertensive by preferential competitive inhibition on α1 receptors
44
Q

Amitriptyline

A
  • <b>Class</b> = Tricyclic antidepressant<br></br>- <b>Target</b> = NET<br></br>- <b>Mechanism</b> = Blocker<br></br>- <b>Steps</b>: <br></br>1) Blocks NET to prevent uptake of norepinephrine and 5-HT through uptake 1<br></br>- <b>Info</b>:<br></br>- replaced by SSRIs, which only blocks specific 5-HT transporter<br></br>-side effects: sedation due to H1 receptor block, postural hypotension, dry mouth, constipation, ventricular dysrythmias
45
Q

Atenolol

A
  • <b>Class</b> = Selective β1 antagonist<br></br>- <b>Target</b> = Selective β1 antagonist<br></br>- <b>Mechanism</b> = Antagonist<br></br>- <b>Steps</b>: <br></br>- <b>Info</b>:<br></br>Used in Hypertension<br></br>Less likely to cause bronchoconstriction (compared to propranolol ∵ selective to β1)<br></br>Also treat dysrhythmias and angina<br></br>Does not cross BBB (hydrophilic)
46
Q

Atracurium

A
  • <b>Class</b> = Quaternary ammonium<br></br>- <b>Target</b> = nAChR at NMJ<br></br>- <b>Mechanism</b> = competitive antagonism<br></br>- <b>Steps</b>: <br></br>1. Block end-plate potential in response to nerve stimulation<br></br>2. Antagonise the effects of directly applied ACh/other agonist<br></br>3. Tetanic fade - in presence of drug teatanus in response to high freq. stimulation is not maintained. This is due to block of autoreceptors which give +ve feedback to maintain transmitter release<br></br><br></br>- <b>Info</b>: <br></br>-Charged ∴ not orally active<br></br>-Broken down by plasma esterases<br></br>(∴ shorter duration of action than pancuronium)<br></br>- Used in anaesthetics<br></br>—Produce muscle relaxation<br></br>—Affect fast (white) muscles > slow (red)<br></br>(thought to ↓ respiratory depression ∵ respiratory muscles are slow twitch)<br></br>-Blocking can be reversed by anticholinesterases
47
Q

Atropine

A
  • <b>Class</b> =<br></br>- <b>Target</b> = mAChR receptor (non-selective)<br></br>- <b>Mechanism</b> = Antagonist<br></br>- <b>Steps</b>: <br></br>- <b>Info</b>:<br></br>Used to be used to induce pupil dilation (but too long lasting, thus now sympathetic agonists used instead)
48
Q

Bethanechol

A
  • <b>Class</b> = <br></br>- <b>Target</b> = mAChR (non-specific) <br></br>- <b>Mechanism</b> = Agonist<br></br>- <b>Steps</b>: <br></br>- <b>Info</b>:<br></br>Used for urinary retention<br></br>Poor oral absorption
49
Q

Botulinum toxins

A
  • <b>Class</b> = Toxin<br></br>- <b>Target</b> = SNARE (mainly <b>cholinergic</b> neurons)<br></br>- <b>Mechanism</b> = Inhibits neurotransmitter release<br></br>- <b>Steps</b>: <br></br>1) Has a light and heavy chain<br></br>2) Heavy chain (C-terminus) binds to <b>ganglioside receptor (GT1b)</b> → endocytosis<br></br>3) N terminus translocates light chain from endosomal lumen → light chain now in cytoplasm<br></br>4) Light chain has peptidase activity and targets its SNARE<br></br>- <b>Info</b>:<br></br>Botox B, D, F + G → Synaptobrevin<br></br>Botox A + E → SNAP-25<br></br>Botox C1 → SNAP-25 and Syntaxin
50
Q

beta-Bungarotoxin

A
  • <b>Class</b> = Toxin<br></br>- <b>Target</b> = Nerve ending and K⁺ ion channels<br></br>- <b>Mechanism</b> = Blocks ACh released by destroying nicotinic nerve endings<br></br>- <b>Steps</b>: <br></br>Consists of two chains:<br></br>Chain 1 ⟶ binds to K⁺ ion channels, targeting 2nd chain to nerve terminal<br></br>Chain 2 ⟶ a phospholipase A₂ which destroys the terminal<br></br>- <b>Info</b>:<br></br>Released from krait snake
51
Q

Butaxamine/Butoxamine

A
  • <b>Class</b> = β1 and β2 blocker<br></br>- <b>Target</b> = β1 and β2 adrenoreceptors<br></br>- <b>Mechanism</b> = antagonist<br></br>- <b>Steps</b>: <br></br>- <b>Info</b>:<br></br>• >selectivity for β2<br></br>• No clinical use
52
Q

Caffeine

A
  • <b>Class</b> = A1 receptor antagonist /PDE inhibitor<br></br>- <b>Target</b> = Non-selective drug: A1 receptor and phosphodiesterase (PDE)<br></br>- <b>Mechanism</b> = Antagonist/Inhibitor<br></br>- <b>Steps</b>: <br></br>Antagonism of A1 ⟶ wakefulness + increase heart rate<br></br>Inhibition of PDE ⟶ ↓ break down of cyclic nucleotides ⟶ ↑ rate and force of heart contractions (mainly due to cAMP)<br></br>- <b>Info</b>:<br></br>Waking action is most prominent after prolonged wakefulness
53
Q

Carbidopa

A
  • <b>Class</b> = - <br></br>- <b>Target</b> = DOPA decarboxylase<br></br>- <b>Mechanism</b> = Antagonist<br></br>- <b>Steps</b>: <br></br>1) Given with L-DOPA in treatment of Parkinsons disease<br></br>2) L-DOPA is given as it can cross blood-brain barrier (DA cannot)<br></br>3) L-DOPA alone gives off-target side effects ∵ ↑ DA in periphery<br></br>4) Carbidopa cannot cross BBB ∴ inhibits DOPA decarboxylase peripherally to prevent peripheral side effects of L-DOPA
54
Q

Clonidine

A
  • <b>Class</b> = Adrenoreceptor agonist<br></br>- <b>Target</b> = Slightly selective α2/l1 agonist<br></br>- <b>Mechanism</b> = Agonist<br></br>- <b>Steps</b>: <br></br>• stimulation of presynaptic alpha2 receptors reduces NA release (by downregulating PKA activity presynaptically) and thereby reduces blood pressure<br></br>-it also stimulates I1 receptors (in brain), which may have a more predominant role in clonidine’s ability to act as an anti-hyerpertensive<br></br>- <b>Info</b>:<br></br>• Has been used as an antihypertensive (effect is achieved by stimulating receptors in hind brain)<br></br>• Missing one dose ⟶ rebound hypertension<br></br>Not used in UK
55
Q

Clorgiline [clorgyline]

A
  • <b>Class</b> = MAO inhibitor<br></br>- <b>Target</b> = MAO-A<br></br>- <b>Mechanism</b> = Inhibitor<br></br>- <b>Steps</b>: <br></br>- <b>Info</b>:<br></br>-selective blocker of MAO-A, thereby preventing breakdown of presynaptic 5-HT<br></br>-used in the treatment of depression<br></br>-exacerbation of the cheese effect from tyramine-containing foodstuffs<br></br>- excessive stimulation causing tremor and insomnia, muscarinic effects (dry mouth, constipation).
56
Q

Cocaine

A
  • <b>Class</b> =<br></br>- <b>Target</b> = NET<br></br>- <b>Mechanism</b> = Blocker<br></br>- <b>Steps</b>: <br></br>1) Blocks NET to prevent uptake of norepinephrine through <b>uptake 1</b><br></br>2) This results in prolonged NA-dependent signalling<br></br>- <b>Info</b>:
57
Q

D-amphetamine [dexamfetamine]

A
  • <b>Class</b> = Indirectly acting sympathomimetic amines<br></br>- <b>Target</b> = -<br></br>- <b>Mechanism</b> = Displaces NA from vesicles<br></br>- <b>Steps</b>: <br></br>• Taken up into storage vesicles<br></br>• ∵ it is a weak base ⟶ ↑vesicular pH ⟶ ↓ pH gradient that is required for VMAT2 to function ⟶ prevention of uptake of further NA to vesicle<br></br>• Displaced NA leaves cell through nerve endings ⟶ stimulate receptors<br></br><br></br>- <b>Info</b>:<br></br>• Substrate for uptake 1<br></br>• Dexamfetamine has an α-methyl group ∴ it is • not metabolized by MAO (it is actually a weak inhibitor)<br></br>• Can reduce appetite
58
Q

Darifenacin

A
  • <b>Class</b> =<br></br>- <b>Target</b> = Selective M3 muscarinic receptor<br></br>- <b>Mechanism</b> = Reversible antagonist <br></br>- <b>Steps</b>: <br></br>- <b>Info</b>: <br></br>Reduces bladder constriction in the treatment of urinary incontinence to decrease the urge to urinate
59
Q

Dipyridamole

A
  • <b>Class</b> =<br></br>- <b>Target</b> = Adenosine uptake mechanism/PDE V<br></br>- <b>Mechanism</b> = Prevents adenosine uptake into cells<br></br>- <b>Steps</b>: <br></br>- <b>Info</b>:<br></br>• Blocks adenosine uptake to prevent termination of adenosine-dependent signalling<br></br>• By amplifying the effects of endogenous adenosine on A2A and A2B receptors, dypyridamole is a potent vasodilator<br></br>• PDE V inhibition → ↑ cGMP<br></br><b>Causes coronary steal</b>
60
Q

Dobutamine

A
  • <b>Class</b> = Beta agonist (β1)<br></br>- <b>Target</b> = Selective <b>β1</b> agonist<br></br>- <b>Mechanism</b> = Agonist<br></br>- <b>Steps</b>: Effects on β1 ⟶ ↑ heart rate + ↑ inotropy (effect on isotropy > chronotropy)<br></br>- <b>Info</b>: <br></br>Used in <b>cardiogenic shock</b><br></br>Post heart surgery<br></br>In heart failure (without HTN)
61
Q

D-tubocurarine [curare/tubocurarine]

A
  • <b>Class</b> = <br></br>- <b>Target</b> = nAChR (non-selective between ganglion and NMJ)<br></br>- <b>Mechanism</b> = Antagonist<br></br>- <b>Info</b>: <br></br>Generated through purification of curare<br></br>Charged ∴ not orally active
62
Q

Dyflos [diisopropyl fluorophosphate/DFP]

A
  • <b>Class</b> = Long acting antiChE <br></br>- <b>Target</b> = acetylcholinesterase (AChE)<br></br>- <b>Mechanism</b> = Irreversible inhibitor of AChE<br></br>- <b>Steps</b>: <br></br>• Organophosphorous compound<br></br>• Forms strong covalent bond between phosphorous atom and the serine residue at esteratic site<br></br><br></br>- <b>Info</b>: <br></br>Used to treat glaucoma
63
Q

Edrophonium

A
  • <b>Class</b> = Short acting antiChE<br></br>- <b>Target</b> = acetylcholinesterase (AChE)<br></br>- <b>Mechanism</b> = Reversible inhibitor of AChE<br></br>- <b>Steps</b>: <br></br>• Quaternary compound<br></br>• Binds to anionic site in the active site of AChE through electrostatic intereactions<br></br>- <b>Info</b>: <br></br>Used to diagnose myasthenia gravis
64
Q

Entacapone

A
  • <b>Class</b> = COMT inhibitor<br></br>- <b>Target</b> = COMT<br></br>- <b>Mechanism</b> = Inhibitor<br></br>- <b>Steps</b>: <br></br>- <b>Info</b>:<br></br>Used in Parkinson’s disease
65
Q

Guanethidine

A
  • <b>Class</b> =<br></br>- <b>Target</b> = <br></br>- <b>Mechanism</b> = Blocks release of NA<br></br>- <b>Steps</b>: <br></br>•Taken into nerve by Uptake 1 ∴ compete with NA<br></br>• ∴ can potentiate exogenously applied NA<br></br>• <b>Large doses</b> ⟶ behave as indirectly acting sympathomimetic amines (as described above)<br></br>• <b>Repeated low doses</b> ⟶ block the release of NA evoked by APs (spontaneous release is unaffected, showing that vesicle release processes are intact)<br></br>- <b>Info</b>:<br></br>Used to be used for HTN <b>not any more</b>
66
Q

Hemicholinium

A
  • <b>Class</b> = -<br></br>- <b>Target</b> = Na⁺/Choline cotransporter<br></br>- <b>Mechanism</b> = Blocker<br></br>- <b>Steps</b>: <br></br>Hemicholinium blocks the symporter →↓ ACh production in pre-synaptic terminal<br></br>- <b>Info</b>:<br></br>Only reduces neurotransmission with high rates of stimulation
67
Q

Hexamethonium

A
  • <b>Class</b> = <br></br>- <b>Target</b> = nAChR at autonomic ganglion<br></br>- <b>Mechanism</b> = Channel pore blocker <br></br>- <b>Steps</b>: <br></br>Use-dependent blocker of open channel pore<br></br>- <b>Info</b>: <br></br>Previously used for treatment of HTN but discontinued ∵<br></br>1. Caused loss of both SNS (wanted effect ⟶ ↓ vascular tone) and PSNS (lead to <b>Hexamethonium man</b>)<br></br>2. It has a double positive charge ∴ needed frequent administration via injection
68
Q

Idazoxan

A
  • <b>Class</b> = α1 and α2 blocker<br></br>- <b>Target</b> = α1 and α2 adrenoreceptors<br></br>- <b>Mechanism</b> = antagonist<br></br>- <b>Steps</b>: <br></br>- <b>Info</b>:<br></br>• >selectivity for α2
69
Q

Imipramine

A
  • <b>Class</b> = Tricyclic antidepressant<br></br>- <b>Target</b> = NET<br></br>- <b>Mechanism</b> = Blocker<br></br>- <b>Steps</b>: <br></br>1) Blocks NET to prevent uptake of norepinephrine and 5-HT through uptake 1<br></br>- <b>Info</b>:<br></br>- replaced by SSRIs, which only blocks specific 5-HT transporter<br></br>-side effects: sedation due to H1 receptor block, postural hypotension, dry mouth, constipation, ventricular dysrhythmias
70
Q

Isoprenaline

A
  • <b>Class</b> = Beta agonist<br></br>- <b>Target</b> = Non-selective β agonist<br></br>- <b>Mechanism</b> = Agonist<br></br>- <b>Steps</b>: <br></br>causes bronchodilatation through an action on B2 and increased heart rate through B1<br></br>- <b>Info</b>:<br></br>Was used more in asthma (replaced now by β2 selective agonists)<br></br>Effects on β2 ⟶ bronchodilation but effects on β1 ⟶ ↑ heart rate which was undesired<br></br>10x more potent than adrenaline<br></br><b>NOT A SUBSTRATE FOR UPTAKE 1</b>
71
Q

Labetalol

A
  • <b>Class</b> = Combined α and β blocker<br></br>- <b>Target</b> = alpha1, beta1, beta2 adrenoreceptors<br></br>- <b>Mechanism</b> = antagonist<br></br>- <b>Steps</b>: <br></br>Has 4 isomers with different actions:<br></br>1. R,R - β blocker + weak α1 blocker<br></br>2. R,S - no activity<br></br>3. S,R - α1 blocker + very weak β blocker <br></br>4. S,S - α1 blocker<br></br>- <b>Info</b>:<br></br>Used to treat <b>hypertension in pregnancy</b>
72
Q

Malathion

A
  • <b>Class</b> = Long acting antiChE <br></br>- <b>Target</b> = acetylcholinesterase (AChE)<br></br>- <b>Mechanism</b> = Irreversible inhibitor of AChE<br></br>- <b>Steps</b>: <br></br>• Organophosphorous compound<br></br>• Forms strong covalent bond between phosphorous atom and the serine residue at esteratic site<br></br>- <b>Info</b>: <br></br>Used as an insecticide to kill lice
73
Q

Mecamylamine

A
  • <b>Class</b> = <br></br>- <b>Target</b> = nAChR at autonomic ganglion<br></br>- <b>Mechanism</b> = Antagonist<br></br>- <b>Steps</b>: Use-dependent blocker of open channel pore<br></br>- <b>Info</b>: <br></br>Use-dependent, as mecamylamine requires access to the channel
74
Q

Muscarine

A
  • <b>Class</b> = <br></br>- <b>Target</b> = mAChR (non-specific)<br></br>- <b>Mechanism</b> = Agonist<br></br>- <b>Steps</b>: <br></br>- <b>Info</b>:<br></br>No clinical use
75
Q

Neostigmine

A
  • <b>Class</b> = Medium acting antiChE<br></br>- <b>Target</b> = acetylcholinesterase (AChE)<br></br>- <b>Mechanism</b> = Reversible inhibitor of AChE<br></br>- <b>Steps</b>: <br></br>• Binds to the esteratic site and carbomylates the enzyme<br></br>• It is hydrolysed by the enzyme (but much slower than ACh ∴ enzyme is inactivated for many minutes)<br></br><br></br>- <b>Info</b>: <br></br>Orally ⟶ myasthenia gravis<br></br>IV ⟶ reverse neuromuscular blockade after surgery
76
Q

Nicotine

A
  • <b>Class</b> = - <br></br>- <b>Target</b> = nAChR<br></br>- <b>Mechanism</b> = Agonist (can cause <b>depolarising block</b>)<br></br>- <b>Steps</b>: <br></br>Two phases of block<br></br><b>1) Phase I block</b><br></br>Long lasting nature of stimulation ⟶ inactivation of voltage gated Na⁺ channels on post-synaptic cell ∴ post-synaptic cells cannot be stimulated<br></br><br></br><b>2) Phase II block</b><br></br>Membrane repolarised as nictonic receptors become desensitised ∴ stimulation of preganglionic nerve will not excite postganglionic cell<br></br> Because Na⁺ channels are relieved from inactivation, postganglionic cell can be directly stimulated by electrical means<br></br>- <b>Info</b>:
77
Q

Nitroglycerin [glyceryl trinitrate]

A
  • <b>Class</b> = NO donor<br></br>- <b>Target</b> = soluble guanylyl cyclase<br></br>- <b>Mechanism</b> = Activator<br></br>- <b>Steps</b>: <br></br>- <b>Info</b>:<br></br>• Causes actiation of sGC in vascular smooth muscle, leading to smooth muscle relaxation and vasular dilatation<br></br>• Preferentially causes dilatation in collateral vessles. This reduces the amount of ischaemic myocardial tissue. <br></br>• Used in acute angina<br></br>• Must be taken sublingually
78
Q

Pancuronium

A
  • <b>Class</b> = Quaternary ammonium<br></br>- <b>Target</b> = nAChR at NMJ<br></br>- <b>Mechanism</b> = competitive antagonism<br></br>- <b>Steps</b>: <br></br>1. Block end-plate potential in response to nerve stimulation<br></br>2. Antagonise the effects of directly applied ACh/other agonist<br></br>3. Tetanic fade - in presence of drug teatanus in response to high freq. stimulation is not maintained. This is due to block of autoreceptors which give +ve feedback to maintain transmitter release<br></br><br></br>- <b>Info</b>: <br></br>-Charged ∴ not orally active<br></br>-Not broken down by plasma esterases<br></br>(∴ longer duration of action than atracurium)<br></br>- Used in anaesthetics (∵ longer duration)<br></br>—Produce muscle relaxation<br></br>—Affect fast (white) muscles > slow (red)<br></br>(thought to ↓ respiratory depression ∵ respiratory muscles are slow twitch)<br></br>-Blocking can be reversed by anticholinesterases
79
Q

Phentolamine

A
  • <b>Class</b> = Alpha antagonist<br></br>- <b>Target</b> = Non-selective α antagonist<br></br>- <b>Mechanism</b> = Non-selective α antagonist<br></br>- <b>Steps</b>: <br></br>- <b>Info</b>: <br></br>Obsolete in hypertensive treatment ∵ cause reflex tachycardia<br></br>Can cause reflex hypotension
80
Q

Phenylephrine

A
  • <b>Class</b> = Adrenoreceptor agonist<br></br>- <b>Target</b> = Selective α1 agonist<br></br>- <b>Mechanism</b> = Agonist<br></br>- <b>Steps</b>: <br></br>- <b>Info</b>:<br></br>Used to ↑ BP in acute hypotension
81
Q

Pilocarpine

A
  • <b>Class</b> =<br></br>- <b>Target</b> = mAChR (non-selective)<br></br>- <b>Mechanism</b> = Agonist <br></br>- <b>Steps</b>: <br></br>- <b>Info</b>: <br></br>Used in treatment of glaucoma<br></br>Causes contraction of ciliary body ⟶ produces traction on trabecular meshwork ⟶ facilitates aqueous humour drainage ⟶ ↓ intraocular pressure
82
Q

Pralidoxime

A
  • <b>Class</b> = -<br></br>- <b>Target</b> = acetylcholinesterase (AChE) <br></br>- <b>Mechanism</b> = Reverses inhibition of AChE imposed by organophosphates<br></br>- <b>Steps</b>: <br></br>• Phosphate group on the serine residue (of inhibited enzyme) is transferred to the oxime group of pralidoxime ⟶ relieving inhibition<br></br>• This reversal can only occur before the process of ‘aging’ occurs of the acetycholinesterase-inhibitor complex (occurs after a few hours ⟶ chemical rearrangement meaning that the bond is no longer susceptible to nucleophilic attack)
83
Q

Prazosin

A
  • <b>Class</b> = Alpha antagonist (α1)<br></br>- <b>Target</b> = Selective <b>α1 antagonist</b><br></br>- <b>Mechanism</b> = Antagonist<br></br>- <b>Steps</b>: <br></br>- <b>Info</b>:<br></br>Used in hypertension<br></br>Can cause postural hypotension
84
Q

Propranolol

A
  • <b>Class</b> = Non-selective β antagonist<br></br>- <b>Target</b> = β1 and β2 antagonist<br></br>- <b>Mechanism</b> = Antagonist<br></br>- <b>Steps</b>: <br></br>- <b>Info</b>:<br></br>Was used for hypertension but replaced by β1 selective blockers
85
Q

Reserpine

A
  • <b>Class</b> = -<br></br>- <b>Target</b> = VMAT2 <br></br>- <b>Mechanism</b> = Blocks amine binding site on VMAT2<br></br>- <b>Steps</b>: <br></br>• Blocks amine binding site ⟶ prevention of uptake of NA ⟶ depletion of stored NA (and 5-HT in brain)<br></br>• Depletion occurs ∵ there is some leak and MAO in cytoplasm metabolises the neurotransmitters<br></br>• Acts on periphery and CNS<br></br>• Recovery requires synthesis of new vesicles<br></br>- <b>Info</b>: <br></br>Use as a hypertensive stopped ∵ lead to profound depression (5-HT depletion)
86
Q

Salbutamol

A
  • <b>Class</b> = Beta agonist (β2)<br></br>- <b>Target</b> = Selective <b>β2</b> agonist<br></br>- <b>Mechanism</b> = Agonist<br></br>- <b>Steps</b>: <br></br>Effects on β2 ⟶ bronchodilation<br></br>- <b>Info</b>:<br></br>Used in <b>asthma</b>
87
Q

Selegiline

A
  • <b>Class</b> = MAO inhibitor<br></br>- <b>Target</b> = MAO-B<br></br>- <b>Mechanism</b> = Inhibitor<br></br>- <b>Steps</b>: <br></br>- <b>Info</b>:<br></br>- used in the treatment of parkinson’s disease, since is it MOA-B that is responsible for dopamine metabolism in the substantia nigra
88
Q

Sildenafil

A
  • <b>Class</b> = PDE inhibitor<br></br>- <b>Target</b> = PDE V<br></br>- <b>Mechanism</b> = Inhibition<br></br>- <b>Steps</b>: <br></br>- <b>Info</b>:<br></br>• Inhibition of PDE V ⟶ persistence of cGMP in smooth muscle cells ⟶ smooth muscle relaxation, specifically of vascular smooth muscle in the penis<br></br>• It is used in treating impotence and can also be used in pulmonary arterial hypertension
89
Q

Suxamethonium

A
  • <b>Class</b> = Depolarising blocking agent<br></br>- <b>Target</b> = nAChR at NMJ<br></br>- <b>Mechanism</b> = Agonsit but causes depolarising blockage<br></br>- <b>Steps</b>: <br></br><b>1. Phase I</b><br></br>Anitcholinesterases ⟶ deepen bloackade ∵ prolonged ACh signal ⟶ enhanced depolarisation ⟶ blockade of transmission at more junctions<br></br>Non-depolarising blockers can be used in this phase to reverse blockade<br></br><br></br><b>2. Phase II</b><br></br>Anitcholinesterases ⟶ reverse blockade<br></br><br></br>- <b>Info</b>: <br></br>- Only depolarising blocker with clinical use<br></br>- Duration of action = short ∴ used for short procedures (e.g. intubation)<br></br>- Ester ∴ rapidly broken down by plasma BuChE<br></br>- Some people have deficiency of this enzyme ⟶ prolonged action
90
Q

Tetanus toxin

A
  • <b>Class</b> = Toxin<br></br>- <b>Target</b> = Synaptobrevin<br></br>- <b>Mechanism</b> = Inhibits neurotransmitter release<br></br>- <b>Steps</b>: <br></br>Indirectly affects motor neurons<br></br>Retrograde transport to cell → disables inhibitory interneuron<br></br>Causes motor neuron to be more excitable<br></br>- <b>Info</b>:
91
Q

Tranylcypromine

A
  • <b>Class</b> =MAO inhibitor<br></br>- <b>Target</b> = MAO-A and MAO-B<br></br>- <b>Mechanism</b> = Inhibitor (irreversible)<br></br>- <b>Steps</b>: <br></br>- <b>Info</b>:<br></br>- non-selective MOA inhibitor → preventing the breakdown of adrenaline, noradrenaline, dopamine and histamine<br></br>-used in the treatment of refractory depression
92
Q

Tyramine

A
  • <b>Class</b> = Indirectly acting sympathomimetic amines<br></br>- <b>Target</b> = -<br></br>- <b>Mechanism</b> = Displaces endogenous NA from vesicles <br></br>- <b>Steps</b>: <br></br>• Transported to nerve endings and vesicles<br></br>• Displaces NA from vesicles<br></br>• Some NA escape MAO action and reach extracellular space ⟶ activate adrenoreceptors<br></br><br></br>- <b>Info</b>: <br></br>• Substrate for uptake 1<br></br>• Found in food (cheese, red wine, pickled herring, yeast [marmite], soya beans)<br></br>• Large ingestion ⟶ large NA release ⟶ widespread vasoconstriction ⟶ HTN<br></br>• HTN can be fatal (cheese effect)<br></br>Especially likely in people taking MAO inhibitors (MAOI) ⟵ warned about high tyramine foods<br></br>Can be converted to <b>octopamine</b> by DBH (octopamine = false transmitter)
93
Q

Xylazine

A
  • <b>Class</b> = -<br></br>- <b>Target</b> = Selective α2 agonist <br></br>- <b>Mechanism</b> = Agonist<br></br>- <b>Steps</b>: <br></br>- <b>Info</b>:<br></br>Used in vetinary medicine for sedation (effect is on receptors in CNS)