3. The Eisenstein Series and the Discriminant Function Flashcards
Define the Eisenstein series of weight k
The modular form:
G_k (τ) := SUM’ n,m 1/(mτ + n)^k
State the power/divisor function σ_k-1
σ_k-1 (n) = SUM d|n d>0 d^k-1
Relate the Riemann-zeta function and the Bernoulli number
ζ(k) = -(2πi)^k B_k/ 2(k!)
Define the normalised Eisenstein series of weight k
E_k(τ) = 1 - 2k/B_k SUM n=1,∞ σ_k-1(n) q^n
Where does E2 fail as a modular form? How do we deal with it?
Not absolutely convergent; have to fix order of summation which prevents the modularity condition.
Defines a holomorphic function on H, not modular.
Give how E2(-1/τ) transforms
τ^-2 E2(-1/τ) = E2(τ) + 12/2πiτ
Define the Dedekind-eta function η(τ)
η(τ) = q^1/24 PROD n=1,∞ (1-q^n)
How does the Dedekind-eta function relate to E2(τ)
∂/∂τ log(η(τ)) = πi/12 E2(τ)
Give how η(-1/τ) transforms
sqrt(-iτ) η(τ)
Define the discriminant function Δ(τ)
Δ(τ) = η(τ)^24
What is special about Δ(τ)?
It is a cusp form of order 12: Δ(τ) != 0 for all τ ∈ H
Define p(n). How does this relate to q?
The number of partitions of the the positive integer
SUM n=0,∞ p(n)q^n = PROD k=1,∞ 1/(1-q^n)
Define the Ramanujan τ-function; how does this relate to τ?
Δ(τ) = SUM n = 1, τ(n)q^n