1. The Modular Group and its Action on the Upper Half Plane Flashcards
Define the group G
SL2(R) = {g; detg =1}
Define the ‘modular group’ Γ
SL2(Z) = {γ ∈ M2(Z); detγ = 1}
Define the group GL2(Z)
GL2(Z)= {γ ∈ M2(Z); detγ = ±1}
Define the ‘upper half plane’ H
H = {τ = u+iv; v>0}
Define the mobius transformation
gτ = aτ + b /cτ + d
Define Im(gτ)
= Im(τ)/|cτ+d|^2
Define the automophy factor
j(g,τ) = cτ + d
Define the co-cyle relation j(gg’,τ)
= j(g,g’τ) ̇ j(g’,τ)
Define equivalence for elements of H
If there exists some γ ∈ SL2(Z) such that
τ’ = γτ
Define S ∈ SL2(Z)
Clockwise from top left
S = (0, -1, 1, 0)
S: τ → -1/τ
Define T ∈ SL2(Z)
T = (1, 1, 1, 0)
T: τ → τ + 1
Define fundamental domain F for SL2(Z)
(words)
The closed region of H such that no two interior points are equivalent.
Define fundamental domain F for SL2(Z)
(region)
F = {τ=u+iv; |τ|>1, -1/2 ≤ Re(τ) ≤ 1/2}