1. Preliminaries Flashcards

1
Q

Map

A

A mapping from X to is a rule F that assigns to every element x∈X a unique element

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Domain of a Map

A

The X part of F:X->Y

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Target of a Map

A

The Y part of F:X->Y

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Composition of a Map

A

F:X->Y and G:W->X makes GoF:W->Y

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Binary Operation

A

Calculation involving 2 elements of a set to produce another element in the same set

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Closed under Binary Operation

A

Binary Operation works for every element in the set

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Inverse Image of a Map

A

Ex: if f(x)=x^2 then the inverse image of 4 is {-2,2}

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Injective Map

A

Every element of the domain maps to exactly 1 element in the codomain

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Surjective Map

A

Every element of the codomain maps to at least 1 element in the domain

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Bijective Map

A

Both Surjective & Injective

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Relation E on S

A

Let S be a nonempty set. A subset E of S × S is called a relation on S

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Equivalence Relation E on S

A

When the relation is reflexive, symmetric and transitive

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Equivalence Class

A

The set of all elements b ∈ S such that bEa

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Quotient of S by E (S/E)

A

The set of equivalence classes of an

equivalence relation E on S

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Representative of Equivalence Class

A

Element of an equivalence class

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Partition of S

A

A grouping of its elements into non-empty subsets, in such a way that every element is included in exactly one subset.

17
Q

3 Properties of a Partition

A
  1. Doesnt contain empty set
  2. Union of the sets equal to one big set X (said to cover X)
  3. The intersection of 2 distinct set is empty.