05 Deep learning methods* Flashcards
1
Q
categorical encodings
A
- Integer
- red = 1, green=2, blue=3… - dummy
- red= 00
- green = 01
- blue=10 … - one hot
- table format
- r, g, b
1,0,0
0, 1, 0
2
Q
k class classification
A
- use softmax to calculate probability
- use cross entropy to calculate loss
3
Q
stochastic gradient descent
A
- random starting weights
- attempt to find global minimal error
- slower (but more efficient memory)
- minibatches can be used per step (more stable)
4
Q
momentum
A
5
Q
nesterov
A
6
Q
learning rate decay
A
- start with big learning rate
- impose a decay to reduce learning rate by the number of epochs
- decay = (1/ (1+learn_rate . epoch_no.)) . decay0