Year 1 Prob Flashcards
def sample space, sample point, evento
e
operations of set theory
e
disjoiint, pairwise
e
laws of set theory (comm)
e
collections (de morgan)
e
event space, satisfies
e
prob measure and axoims
e
calculus of probabilities
e
finite additivity of disjoint events
e
probswe between 0, 1
e
other probabloity results (partition rule etc)
e
specify porobablities
e
classical interpretation
e
equally likely
e
examples
e
multiplication principle
e
combination, oermutation
e
sampling without replacement proof
e
sampling with replacement
e
def conditional prob
e
multiplication law
e
partition
e
law of total probablility
e
bayes theorem
e
independence
e
indep, complem
e
def random variable
e
def discrete rv
e
def continuos rc
e
induced prob
e
probablity mass function
e
cumulative distribution function
e
properties of dcfs
e
properties of intervals
e
defining cdfs
e
Bernoulli trial
e
bernoulli distribution
e
binomial distribution
e
eometric distribution
e
Poisson distribuitions
e
bivariate distributions
e
joint pmf
e
marginal pmf
e
indeoendence of drv
e
alternative def independence
e
sums of ind drv
e
uniform distribtution
e
exponential distribution
e
normal distribution
e
probabliilty density function
e
density of uniform
e
density exponential
e
bivariate dsist(con)
e
JOINT CDF CONTINN
E
joiint pdf contin
e
independence crv
e
alternative crv ind
e
expectation crv
e
expectation drv
e
non negatrve rv exp
e
unconscious statistician
e
ex constant is constant
e
linearity of expectation
e
modulus over modulus expectation
e
expected value product of irv
e
variance def
e
variance positive
e
calculating the variance
e
variance of a constant is 0
e
variance of a linear function
e
covariance
e
correlation
e
calculating the3 covaraiance
e
independence 0 cov
e
variance of a sum of rv
e
sum of n rv
ew
sum on ind rv
e
Covariance of linear functions of rvs
e
Law of large nUMBERS
E