Week 5 Flashcards
Operators of Linear Temporal Logic
- X (next)
- U (until)
- G (always)
- F (eventually)
Next Operator
unary operator that expresses what happens at the next point in time
Until Operator
binary operator that indicates one thing (first argument) will not become false until the second becomes true
Globally Operator
unary operator that expresses that something is always true from this point on
Eventually Operator
unary operator that expresses something will definitely happen at some point in time but does not specify when
What does pi |= y mean when pi is a path and y is a formula
That the path satisfies the formula.
pi |= a if and only if
a is in L(pi[0])
where L is the function that maps states to atomic propositions
pi |= not y if and only if
pi |= y does not hold
pi |= y1 and y2 if and only if
pi |= y1 and pi |= y2
pi |= y1 or y2 if and only if
pi |= y1 or pi |= y2
pi |= X(y) if and only if
pi[1…] =| y
pi |= (y1 U y2) if and only if
there exists some j > 0 such that pi[j…] |= y2 and for all 0 <= i < j pi[i…]|=y1
pi |= F(y) if and only if
there exists some i>=0 such that pi[i…] |= y
pi |= G(y) if and only if
for all i>= 0, pi[i….] |= y
When is a formula true in a state? Explanation in natural language and formal
A formula is true in a state if it is true for all paths that start in that state.
That is, s |= y if and only if for all pi in Paths(s), pi |= y