Week 5 Flashcards
What is the number of periods for a binomial tree?
n
How do you find S(uu)?
Suu
How do you calculate multi-period binomial tree?
- Calculate Suu, Sud and Sdd
- Calculate Cuu, Cud, and Cdd
- Calculate Δ and B for u, and also for d (outermost branches)
- Use to calculate Cu and Cd
- Use formula to calculate option price
Binomial Pricing of American Options
C = max [ S-K, e^(-rh)[C(u)p* + C(d)(1-p*)] ] P = max [ K-S, e^(-rh)[P(u)p* + P(d)(1-p*)] ]
When are a European call option and an American call option the same price?
When there are no dividends
Black-Scholes Formula for Stocks
C = Se^(-δT)N(d1) - Ke^(-rT)N(d2) P = Ke^(-rT)N(-d2) - Se^(-δT)N(-d1)
d1 = [ln(S/K) + (r-δ+0.5σ^2)T] / σsqrt(T) d2 = d1 - σsqrt(T)
BS Options on Stocks with Dividends
S = S(0) - PV(Div)
BS Options on Currencies
Prepaid forward = x(0)*e^(-r(f)T)
BS Options on Futures
C = F*e^(-rT)N(d1) - Ke^(-rT)N(d2)
d1 = [ln(F/K) + 0.5*(σ^2)*T] / σsqrt(T) d2 = d1 - σsqrt(T)
Delta(Δ) Definition
Change in option price when stock price increases by $1
The number of shares in the portfolio that replicates the option
Delta(Δ) Equations (Call and Put)
Δ(Call) = e^(-δT)N(d1) Δ(Put) = -e^(-δT)N(-d1) = e^(-δT)[1-N(d1)]
Gamma Definition
Change in delta when option price increases by $1
Vega Definition
Change in option price when volatility increases by 1%
Theta Definition
Change in option price when time to maturity decreases by 1 day
Rho Definition
Change in option price when interest rate increases by 1%