Week 2 - Causality and Difference in Differences Flashcards

1
Q

What is causality?

A

X causes Y if..
• We intervene and change X and nothing else,
• Then Y changes as a result.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Why is causality important? /When do we use it?

A

• Many questions we want answers to are causal.
• When we talk about marketing, we often want to know why something happens.
o Did demand/revenue/.. change because of?
o And by how much?
• We also care about non-causal questions (prediction, descriptive relationship/patterns between data).
o But our comparative advantage should be causality.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Why is correlation not causation?

A
  • The opposite is true, B causes A.
  • The two are correlated but there is more to it. A and B are correlated by they’re actually cause by C.
  • There’s another variable involved. A does cause B but as long as D happens.
  • There is a Chain reaction. A causes E, which leads E to cause B.
  • It’s due to chance. Y0ou find patterns or processes with 2 variables being related which shouldn’t be. Statistical change.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

How can you tell when a correlation is causation?

A

Its hard but possible, we need assumptions to estimate an average causal effect:
• “What would have been” – (approximate) counterfactual outcomes.
• “As good as random” – no selection on unobservable
o Known as “conditional independence”.
o No unobserved factors driving variation in variable of interest.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Are regression assumptions causal?

A

Regression assumptions on their own aren’t causal interpretations of B.
• Regression assumptions: Unbiasedness, Variance of estimates.
• Causal inference assumptions: Can an unbiased estimate be interpreted causally.
o Valid counterfactual outcomes.
o Conditional independence.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Why can you use experiments for causality?

A

Experiments use clear counterfactual outcomes, reasonable to assume conditional independence.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

What two types of experiments are there?

A
  • Randomised control trial (RCT). Also called A/B tests: The researcher randomly assigns observational units to treatment group, control group.
  • Natural Experiments / quasi-experiments: “Nature” divides a population into treatment and control in a way that is as good as random.
  • Both approaches compare changes over time between groups.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

When would you use DiD?

A

We can use DiD when we want to answer the following question:
What is the effect of some marketing intervention on those who were effected by it?

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

What are the advantages of using the regression approach? (DiD)

A

Get standard error of estimate.
• Assess whether effect is statistically significant.
• Should cluster standard errors.
Can add extra control variables into the regression.
• Either as usual controls and/or as fixed effects.
• Particularly useful for natural / quasi-experiments.
Can use log(y) as the dependent variable.
• Delta is the percentage change in Y due to treatment.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

What are parallel trends?

A

We must assume that time effects treatment and control groups equally.
Its untestable, however we can check whether patterns in the data are suggestive its OK:
• Check whether prior trends are the same for treated and control groups.
• Compute average of outcome by group over time.
• Was the gap changing a lot during that period? If not, suggestive we’re OK.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

What are threats to internal validity?

A
Statistical inferences made about causal effects are valid for the considered population.
Threats:
•	Failure to randomize.
•	Failure to follow treatment protocol.
•	Attrition.
•	Experimenter demand effects.
•	Small sample sizes.
How well did you know this?
1
Not at all
2
3
4
5
Perfectly