Week 1 - The science of psychology Flashcards
Describe Intuition
The first method of knowing is intuition. When we use our intuition, we are relying on our guts, our emotions, and/or our instincts to guide us.
CAN BE WRONG - Driven by cognitive and motivational biases rather than logical reasoning or scientific evidence.
Describe Authority
Perhaps one of the most common methods of acquiring knowledge is through authority. This method involves accepting new ideas because some authority figure states that they are true. These authorities include parents, the media, doctors, Priests and other religious authorities, the government, and professors. While in an ideal world we should be able to trust authority figures, history has taught us otherwise and many instances of atrocities against humanity are a consequence of people unquestioningly following authority (e.g., Salem Witch Trials, Nazi War Crimes). On a more benign level, while your parents may have told you that you should make your bed in the morning, making your bed provides the warm damp environment in which mites thrive. Keeping the sheets open provides a less hospitable environment for mites. These examples illustrate that the problem with using authority to obtain knowledge is that they may be wrong, they may just be using their intuition to arrive at their conclusions, and they may have their own reasons to mislead you. Nevertheless, much of the information we acquire is through authority because we don’t have time to question and independently research every piece of knowledge we learn through authority. But we can learn to evaluate the credentials of authority figures, to evaluate the methods they used to arrive at their conclusions, and evaluate whether they have any reasons to mislead us.
Rationalism
Rationalism involves using logic and reasoning to acquire new knowledge. Using this method premises are stated and logical rules are followed to arrive at sound conclusions.
The problem with this method is that if the premises are wrong or there is an error in logic then the conclusion will not be valid.
Describe Empiricism
Empiricism involves acquiring knowledge through observation and experience.
Empiricism is at the heart of the scientific method. Science relies on observations. But not just any observations, science relies on structured observations which is known as systematic empiricism.
Define science
Psychology is a science because it takes this same general approach to understanding one aspect of the natural world: human behavior.
Describe - Features of Science
The general scientific approach has three fundamental features (Stanovich, 2010)[1].
- The first is systematic empiricism.
- The second feature of the scientific approach—which follows in a straightforward way from the first—is that it is concerned with empirical questions.
- The third feature of science is that it creates public knowledge. (EG. Journals, articles, research etc)
Publication is an essential feature of science for two reasons.
- One is that science is a social process—a large-scale collaboration among many researchers distributed across both time and space. Our current scientific knowledge of most topics is based on many different studies conducted by many different researchers who have shared their work publicly over many years.
- The second is that publication allows science to be self-correcting. Individual scientists understand that, despite their best efforts, their methods can be flawed and their conclusions incorrect. Publication allows others in the scientific community to detect and correct these errors so that, over time, scientific knowledge increasingly reflects the way the world actually is.
EXAMPLE
Self-correcting nature of science is the “Many Labs Replication Project” – a large and coordinated effort by prominent psychological scientists around the world to attempt to replicate findings from 13 classic and contemporary studies (Klein et al., 2013)[2].
One of the findings selected by these researchers for replication was the fascinating effect, first reported by Simone Schnall and her colleagues at the University of Plymouth, that washing one’s hands leads people to view moral transgressions—ranging from keeping money inside a found wallet to using a kitten for sexual arousal—as less wrong (Schnall, Benton, & Harvey, 2008)[3]. If reliable, this effect might help explain why so many religious traditions associate physical cleanliness with moral purity. However, despite using the same materials and nearly identical procedures with a much larger sample, the “Many Labs” researchers were unable to replicate the original finding (Johnson, Cheung, & Donnellan, 2013)[4], suggesting that the original finding may have stemmed from the relatively small sample size (which can lead to unreliable results) used in the original study. To be clear, at this stage we are still unable to definitively conclude that the handwashing effect does not exist; however, the effort that has gone into testing its reliability certainly demonstrates the collaborative and cautious nature of scientific progress.
Describe - Science Versus Pseudoscience
Pseudoscience refers to activities and beliefs that are claimed to be scientific by their proponents—and may appear to be scientific at first glance—but are not.
EXAMPLE
Biorhythms (not to be confused with sleep cycles or circadian rhythms that do have a scientific basis). The idea is that people’s physical, intellectual, and emotional abilities run in cycles that begin when they are born and continue until they die.
A set of beliefs or activities can be said to be pseudoscientific if
(a) its adherents claim or imply that it is scientific but (b) it lacks one or more of the three features of science.
A set of beliefs and activities might also be pseudoscientific because it does not address empirical questions.
The philosopher Karl Popper was especially concerned with this idea (Popper, 2002)[6]. He argued more specifically that any scientific claim must be expressed in such a way that there are observations that would—if they were made—count as evidence against the claim. In other words, scientific claims must be falsifiable. The claim that women talk more than men is falsifiable because systematic observations could reveal either that they do talk more than men or that they do not. As an example of an unfalsifiable claim, consider that many people who believe in extrasensory perception (ESP) and other psychic powers claim that such powers can disappear when they are observed too closely. This makes it so that no possible observation would count as evidence against ESP. If a careful test of a self-proclaimed psychic showed that she predicted the future at better-than-chance levels, this would be consistent with the claim that she had psychic powers. But if she failed to predict the future at better-than-chance levels, this would also be consistent with the claim because her powers can supposedly disappear when they are observed too closely.
Why should we concern ourselves with pseudoscience? There are at least three reasons.
1. One is that learning about pseudoscience helps bring the fundamental features of science—and their importance—into sharper focus.
- A second is that biorhythms, psychic powers, astrology, and many other pseudoscientific beliefs are widely held and are promoted on the Internet, on television, and in books and magazines. Far from being harmless, the promotion of these beliefs often results in great personal toll as, for example, believers in pseudoscience opt for “treatments” such as homeopathy for serious medical conditions instead of empirically-supported treatments. Learning what makes them pseudoscientific can help us to identify and evaluate such beliefs and practices when we encounter them.
- A third reason is that many pseudosciences purport to explain some aspect of human behavior and mental processes, including biorhythms, astrology, graphology (handwriting analysis), and magnet therapy for pain control. It is important for students of psychology to distinguish their own field clearly from this “pseudo psychology.”
Describe the three goals of science and give an example for each.
- The first and most basic goal of science is to describe. This goal is achieved by making careful observations.
- The second goal of science is to predict. Once we have observed with some regularity that two behaviors or events are systematically related to one another we can use that information to predict whether an event or behavior will occur in a certain situation.
- The third and ultimate goal of science is to explain. This goal involves determining the causes of behavior.
Distinguish between basic research and applied research.
Basic research in psychology is conducted primarily for the sake of achieving a more detailed and accurate understanding of human behavior, without necessarily trying to address any particular practical problem.
Applied research is conducted primarily to address some PRACTICAL PROBLEM.
Explain the limitations of common sense when it comes to achieving a detailed and accurate understanding of human behavior
Some people wonder whether the scientific approach to psychology is necessary. Can we not reach the same conclusions based on common sense or intuition? Certainly we all have intuitive beliefs about people’s behavior, thoughts, and feelings—and these beliefs are collectively referred to as folk psychology. Although much of our folk psychology is probably reasonably accurate, it is clear that much of it is not. For example, most people believe that anger can be relieved by “letting it out”—perhaps by punching something or screaming loudly. Scientific research, however, has shown that this approach tends to leave people feeling more angry, not less (Bushman, 2002)[1]. Likewise, most people believe that no one would confess to a crime that they had not committed unless perhaps that person was being physically tortured. But again, extensive empirical research has shown that false confessions are surprisingly common and occur for a variety of reasons (Kassin & Gudjonsson, 2004)[2].
Give several examples of common sense or folk psychology that are incorrect
How can so many of our intuitive beliefs about human behavior be so wrong? Notice that this is an empirical question, and it just so happens that psychologists have conducted scientific research on it and identified many contributing factors (Gilovich, 1991)[4]. One is that forming detailed and accurate beliefs requires powers of observation, memory, and analysis to an extent that we do not naturally possess. It would be nearly impossible to count the number of words spoken by the women and men we happen to encounter, estimate the number of words they spoke per day, average these numbers for both groups, and compare them—all in our heads. This is why we tend to rely on mental shortcuts (what psychologists refer to as heuristics) in forming and maintaining our beliefs. For example, if a belief is widely shared—especially if it is endorsed by “experts”—and it makes intuitive sense, we tend to assume it is true. This is compounded by the fact that we then tend to focus on cases that confirm our intuitive beliefs and not on cases that dis-confirm them. This is called confirmation bias. For example, once we begin to believe that women are more talkative than men, we tend to notice and remember talkative women and silent men but ignore or forget silent women and talkative men. We also hold incorrect beliefs in part because it would be nice if they were true. For example, many people believe that calorie-reducing diets are an effective long-term treatment for obesity, yet a thorough review of the scientific evidence has shown that they are not (Mann et al., 2007)[5]. People may continue to believe in the effectiveness of dieting in part because it gives them hope for losing weight if they are obese or makes them feel good about their own “self-control” if they are not.
Scientists—especially psychologists—understand that they are just as susceptible as anyone else to intuitive but incorrect beliefs. This is why they cultivate an attitude of skepticism. Being skeptical does not mean being cynical or distrustful, nor does it mean questioning every belief or claim one comes across (which would be impossible anyway). Instead, it means pausing to consider alternatives and to search for evidence—especially systematically collected empirical evidence—when there is enough at stake to justify doing so. For example, imagine that you read a magazine article that claims that giving children a weekly allowance is a good way to help them develop financial responsibility. This is an interesting and potentially important claim (especially if you have children of your own). Taking an attitude of skepticism, however, would mean pausing to ask whether it might be instead that receiving an allowance merely teaches children to spend money—perhaps even to be more materialistic. Taking an attitude of skepticism would also mean asking what evidence supports the original claim. Is the author a scientific researcher? Is any scientific evidence cited? If the issue was important enough, it might also mean turning to the research literature to see if anyone else had studied it.
Because there is often not enough evidence to fully evaluate a belief or claim, scientists also cultivate a tolerance for uncertainty. They accept that there are many things that they simply do not know. For example, it turns out that there is no scientific evidence that receiving an allowance causes children to be more financially responsible, nor is there any scientific evidence that it causes them to be materialistic. Although this kind of uncertainty can be problematic from a practical perspective—for example, making it difficult to decide what to do when our children ask for an allowance—it is exciting from a scientific perspective. If we do not know the answer to an interesting and empirically testable question, science, and perhaps even you as a researcher, may be able to provide the answer.
Define skepticism and its role in scientific psychology
How can so many of our intuitive beliefs about human behavior be so wrong? Notice that this is an empirical question, and it just so happens that psychologists have conducted scientific research on it and identified many contributing factors (Gilovich, 1991)[4]. One is that forming detailed and accurate beliefs requires powers of observation, memory, and analysis to an extent that we do not naturally possess. It would be nearly impossible to count the number of words spoken by the women and men we happen to encounter, estimate the number of words they spoke per day, average these numbers for both groups, and compare them—all in our heads. This is why we tend to rely on mental shortcuts (what psychologists refer to as heuristics) in forming and maintaining our beliefs. For example, if a belief is widely shared—especially if it is endorsed by “experts”—and it makes intuitive sense, we tend to assume it is true. This is compounded by the fact that we then tend to focus on cases that confirm our intuitive beliefs and not on cases that dis-confirm them. This is called confirmation bias. For example, once we begin to believe that women are more talkative than men, we tend to notice and remember talkative women and silent men but ignore or forget silent women and talkative men. We also hold incorrect beliefs in part because it would be nice if they were true. For example, many people believe that calorie-reducing diets are an effective long-term treatment for obesity, yet a thorough review of the scientific evidence has shown that they are not (Mann et al., 2007)[5]. People may continue to believe in the effectiveness of dieting in part because it gives them hope for losing weight if they are obese or makes them feel good about their own “self-control” if they are not.
Scientists—especially psychologists—understand that they are just as susceptible as anyone else to intuitive but incorrect beliefs. This is why they cultivate an attitude of skepticism. Being skeptical does not mean being cynical or distrustful, nor does it mean questioning every belief or claim one comes across (which would be impossible anyway). Instead, it means pausing to consider alternatives and to search for evidence—especially systematically collected empirical evidence—when there is enough at stake to justify doing so. For example, imagine that you read a magazine article that claims that giving children a weekly allowance is a good way to help them develop financial responsibility. This is an interesting and potentially important claim (especially if you have children of your own). Taking an attitude of skepticism, however, would mean pausing to ask whether it might be instead that receiving an allowance merely teaches children to spend money—perhaps even to be more materialistic. Taking an attitude of skepticism would also mean asking what evidence supports the original claim. Is the author a scientific researcher? Is any scientific evidence cited? If the issue was important enough, it might also mean turning to the research literature to see if anyone else had studied it.
Because there is often not enough evidence to fully evaluate a belief or claim, scientists also cultivate a tolerance for uncertainty. They accept that there are many things that they simply do not know. For example, it turns out that there is no scientific evidence that receiving an allowance causes children to be more financially responsible, nor is there any scientific evidence that it causes them to be materialistic. Although this kind of uncertainty can be problematic from a practical perspective—for example, making it difficult to decide what to do when our children ask for an allowance—it is exciting from a scientific perspective. If we do not know the answer to an interesting and empirically testable question, science, and perhaps even you as a researcher, may be able to provide the answer.
Examples of psychology Myths
“People use only 10% of their brain power.”
“Most people experience a midlife crisis in their 40’s or 50’s.”
“Students learn best when teaching styles are matched to their learning styles.”
“Low self-esteem is a major cause of psychological problems.”
“Psychiatric admissions and crimes increase during full moons.”
Describe - Experimental Psychologists
Experimental Psychologists
Scientific research in psychology is generally conducted by people with doctoral degrees (usually the doctor of philosophy [Ph.D.]) and master’s degrees in psychology and related fields, often supported by research assistants with bachelor’s degrees or other relevant training. Some of them work for government agencies (e.g., doing research on the impact of public policies), national associations (e.g., the American Psychological Association), non-profit organizations (e.g., National Alliance on Mental Illness), or in the private sector (e.g., in product marketing and development; organizational behavior). However, the majority of them are college and university faculty, who often collaborate with their graduate and undergraduate students. Although some researchers are trained and licensed as clinicians for mental health work—especially those who conduct research in clinical psychology—the majority are not. Instead, they have expertise in one or more of the many other subfields of psychology: behavioral neuroscience, cognitive psychology, developmental psychology, personality psychology, social psychology, and so on. Doctoral-level researchers might be employed to conduct research full-time or, like many college and university faculty members, to conduct research in addition to teaching classes and serving their institution and community in other ways.
Of course, people also conduct research in psychology because they enjoy the intellectual and technical challenges involved and the satisfaction of contributing to scientific knowledge of human behavior. You might find that you enjoy the process too. If so, your college or university might offer opportunities to get involved in ongoing research as either a research assistant or a participant. Of course, you might find that you do not enjoy the process of conducting scientific research in psychology. But at least you will have a better understanding of where scientific knowledge in psychology comes from, an appreciation of its strengths and limitations, and an awareness of how it can be applied to solve practical problems in psychology and everyday life.
Describe - Clinical Psychologists
Psychology is the scientific study of behavior and mental processes. But it is also the application of scientific research to “help people, organizations, and communities function better” (American Psychological Association, 2011)[1]. By far the most common and widely known application is the clinical practice of psychology—the diagnosis and treatment of psychological disorders and related problems. Let us use the term clinical practice broadly to refer to the activities of clinical and counseling psychologists, school psychologists, marriage and family therapists, licensed clinical social workers, and others who work with people individually or in small groups to identify and help address their psychological problems. It is important to consider the relationship between scientific research and clinical practice because many students are especially interested in clinical practice, perhaps even as a career.
The main point is that psychological disorders and other behavioral problems are part of the natural world. This means that questions about their nature, causes, and consequences are empirically testable and therefore subject to scientific study. As with other questions about human behavior, we cannot rely on our intuition or common sense for detailed and accurate answers. Consider, for example, that dozens of popular books and thousands of websites claim that adult children of alcoholics have a distinct personality profile, including low self-esteem, feelings of powerlessness, and difficulties with intimacy. Although this sounds plausible, scientific research has demonstrated that adult children of alcoholics are no more likely to have these problems than anybody else (Lilienfeld et al., 2010)[2]. Similarly, questions about whether a particular psychotherapy is effective are empirically testable questions that can be answered by scientific research. If a new psychotherapy is an effective treatment for depression, then systematic observation should reveal that depressed people who receive this psychotherapy improve more than a similar group of depressed people who do not receive this psychotherapy (or who receive some alternative treatment). Treatments that have been shown to work in this way are called empirically supported treatments.