Week 1 Flashcards
Minimum inhibitory concentration
concentration of drug bacteria stops growth
Minimum bactericidal concentration
concentration of bactericidal drug at which 99% of bacteria are killed
DQ CRIMES
important metabolism and/or hepatic elimination:
Clindamycin, Chloramphenicol Rifampin Isoniazid Metronidazole Erythromycins Sulfonamides, Streptogramins Doxycycline Fluoroquinolones
Features of Gram Positive organisms
1) Lipoteichoic acid
2) Thick peptidoglycan cell wall (accessible outer PG wall)
- PG can be up to 90% of cell wall
→ blue/purple
Features of Gram Negative organisms
1) Porins inserted in LPS outer membrane (endotoxin)
2) Thin peptidoglycan cell wall
3) Periplasmic space between cytoplasmic membrane and thin PG layer (B-lactamase location)
→ pink
Pattern Recognition Receptors (PRRs)
on epithelium, T, B, NK cells, phagocytes, dendritic cells
1) Transmembrane (surface) = TLR
2) Cytosolic = NOD, TLR
3) Extracellular = CD14, LBP
PRRs recognize PAMPs and DAMPs
Gram + Cocci (2)
1) Staph
2) Strep
Gram + Rods (bacilli) (7)
1) Bacillus
2) Clostridium
3) Gardnerella (gram variable)
4) Lactobacillus
5) Listeria
6) Myobacterium (acid fast)
7) Propionibacterium
Gram + branching filamentous (2)
1) Actinomyces
2) Nocardia (weakly acid fast)
No cell wall (2)
1) Mycoplasma
2) Ureaplasma (contains sterols, which do not gram stain)
Gram - cocci (2)
1) Moraxella catarrhalis
2) Neisseria
Gram - bacilli enterics (13)
1) Bacteroides
2) Camplyobacter
3) E. Coli
4) Enterobacter
5) Helicobacter
6) Klebsiella
7) Proteus
8) Pseudomonas
9) Salmonella
10) serratia
11) Shigella
12) Vibrio
13) Yersinia
Gram - bacilli respiratory
1) Bordatella
2) Haemophilus (pleomorphic)
3) Legionella (silver stain)
Gram - bacilli zoonotic
1) Bartonella
2) Brucella
3) Francisella
4) Pasteurella
Gram - pleomorphic (2)
1) Chlamydia (giemsa)
2) Rickettsiae (giemsa)
Gram - spirochettes (3)
1) Borrelia (giemsa)
2) Leptospira
3) Treponema
Penicillin G and V
Mechanism
Cell wall synthesis inhibitors
-Bind penicillin-binding proteins (transpeptidases) and block transpeptidase crosslinking of peptidoglycan in cell wall
Penicillin G and V
Toxicity (3)
1) Type I anaphylaxis reaction
2) Type III rash
3) convulsions at very high doses
Penicillin G and V
Resistance
Penicillinase (B-lactamase) cleaves B-lactam ring
Penicillin G and V
Administration / metabolism
Pen G = IV and IM
Pen V = oral
renal excretion
bactericidal
Penicillin G and V
Clinical use (3)
1) Gram + cocci and rods (staph, strep, entero, actinomyces)
2) Gram - rods (Neisseria, M. catarrhalis)
3) Spirochete (T. pallidum)
Amoxicillin, Ampicillin
Mechanism
Cell wall synthesis inhibitors
-Bind penicillin-binding proteins (transpeptidases) and block transpeptidase crosslinking of peptidoglycan in cell wall
MUST COMBINE with Clavulanic acid to protect against destruction by B-lactamase
Amoxicillin, Ampicillin
Clinical use (8)
Extended spectrum penicillin
“HHELPSS kill enterococci”
1) H. pylori
2) H. influenzae
3) E. coli
4) Listeria monocytogenes
5) proteus mirabilis
6) Salmonella
7) Shigella
8) Enterococci
Amoxicillin, Ampicillin
Toxicity (4)
1) Type I anaphylaxis reaction
2) Type III rash
3) convulsions at very high doses
4) Pseudomembranous colitis
Amoxicillin, Ampicillin
Mechanism of resistance
Penicillinase in bacteria (B-lactamse) cleaves B-lacta ring
Amoxicillin, Ampicillin
administration / metabolism
Oral
AmOxacillin is better oral
Renal excretion
Diclocacillin, Nafcillin, Oxacillin, Methicillin
Mechanism
PENICILLINASE-RESISTANT
–> bulky R group blocks B-lactamase from accessing B-lactam ring
Cell wall synthesis inhibitors
-Bind penicillin-binding proteins (transpeptidases) and block transpeptidase crosslinking of peptidoglycan in cell wall
Diclocacillin, Nafcillin, Oxacillin, Methicillin
Clinical use (1)
1) MSSA (not MRSA)
Diclocacillin, Nafcillin, Oxacillin, Methicillin
Toxicity (2)
1) Hypersensitivity reactions
2) Interstitial nephritis
Diclocacillin, Nafcillin, Oxacillin, Methicillin
Administration / excretion
Renal excretion
Oral (not methicillin or nafcillin)
Piperacillin, Ticarcillin
Mechanism
ANTI-PSEUDOMONAL
Cell wall synthesis inhibitors
-Bind penicillin-binding proteins (transpeptidases) and block transpeptidase crosslinking of peptidoglycan in cell wall
Piperacillin, Ticarcillin
administration / metabolism
IV ONLY
renal excretion
Piperacillin, Ticarcillin
Clinical use (2)
EXTENDED SPECTRUM
1) Pseudomonas
2) Bacteroides
Piperacillin, Ticarcillin
Toxicity
1) Hypersensitivity reactions (I and III)
Cephalosporins (generation 1-5)
mechanism of action
Toxicity?
B-lactam drug, inhibits cell wall synthesis but less susceptible to penicillinases
Bactericidal
Less severe allergy than penicillins (can give to patient with type III allergy, but not type I allergy to penicillins)
1st generation cephalosporins
2 names
cefazolin, cephalexin
cefazolin, cephalexin (1st gen)
uses (4)
PEcK
1) Proteus mirabilis
2) E. Coli
3) Klebsiella pneumoniae
4) **used before surgery to prevent S. aureus wound infections
2nd generation cephalosporins
3 names
cefoxitin, cefaclor, cefuroxime
cefoxitin, cefaclor, cefuroxime (2nd gen)
Use (7)
HEN PEcKS
1) Haemophilus influenzae
2) Enterobacter aerogenes
3) Neisseria
4) Proteus mirabilis
5) E. Coli
6) Klebsiella pneumoniae
7) Serratia
3rd generation cephalosporins
3 names
ceftriaxone, cefotaxime, ceftazidime
ceftriaxone, cefotaxime, ceftazidime (3rd gen)
uses
1) serious gram - infections resistant to other B-lactams
Ceftriaxone –> meningitis, gonorrhea, disseminated Lyme disease
Ceftazidime –> Pseudomonas
Ceftaroline
5th gen cephalosporin
action against MRSA
does not cover pseudomonas
Cephalosporins
mechanism of resistance
structural changes in penicillin binding proteins (transpeptidases) e.g. MRSA
Carbapenems
(imipenem, Ertapenem, meropenem, doripenem)
Mechanism
Broad spectrum B-lactamase-resistant cell wall synthesis inhibitor
Imipenem
Broad spectrum B-lactamase-resistant carbapenem
always coadministered with CILASTATIN (inhibits renal dehydropeptidase I) –> decreases inactivation of drug in renal tubules
Carbapenems
administration / metabolism
IV ONLY
renal excretion
Carbapenems
Toxicity (1)
GI distress
Carbapenems
Clinical use
1) Wide spectrum reserved for resistant organisms
Monobactams (Aztreonam)
Mechanism
Cell wall synthesis inhibitor
Less susceptible to B-lactamases
synergistic with aminoglycosides
**NO cross allergenicity with penicillins
Monobactams (Aztreonam)
Clinical use (1)
1) Gram negative rods only
* for penicillin-allergic patients or renal insufficiency who cannot tolerate aminoglycosides
Vancomycin
Mechanism
Inhibits cell wall peptidoglycan formation by binding D-ala D-ala portion of cell wall precursors
bactericidal
not susceptible to B-lactamases
Vancomycin
administration / metabolism
Poor oral absorption
given IV or oral
renal excretion
Vancomycin
Toxicity (5)
1) Nephrotoxicity
2) Ototoxicity
3) Thrombophlebitis
4) Chills, fever, rash
5) Red Man Syndrome (prevent with pre tx with anti-histamine, slow infusion rate)
Vancomycin
Clinical use
1) Narrow spectrum, Gram + (**MRSA, staph epidermidis, enterococcus, C. diff/oral)
for serious multi-drug resistant organisms
Vancomycin
Mechanism of resistance
modification of amino acids D-ala D-ala –> D-ala D-lac
Fluoroquinolones
drug names
Ciprofloxacin Norfloxacin Levofloxacin Ofloxacin Moxifloxacin Gemifloxacin Enoxacin
Fluoroquinolones
Mechanism
Inhibit prokaryotic enzymes topoisomerase II (DNA gyrase) and topoisomerase IV
Bactericidal
Fluoroquinolones
Administration / metabolism
Good PO or IV
Renal/HEPATIC* excretion
Fluoroquinolones
Toxicity (5)
1) CANNOT take with antacids or theophylline
2) GI upset
3) Contraindicated in PREGNANT WOMEN, nursing mothers, and CHILDREN (< 18 yrs) –> Cartilage damage
4) Tendonitis/tendon rupture in people > 60 yrs or pt taking prednisone
5) May prolong QT
“FluroquinolONES hurt attachments to your BONES”
Fluoroquinolones
Clinical use (1)
1) Gram - rods in urinary and GI tracts (including Pseudomonas and Neisseria)
Fluoroquinolones
Mechanism of resistance (3)
Chromosome encoded mutations in DNA gyrase, plasmid-mediated resistance, efflux pumps
Aminoglycosides
drug names
Gentamycin
Neomycin
Tobramycin
Streptomycin
Aminoglycosides
administraiton / metabolism
Renal excretion
IV or IM
Aminoglycosides
toxicity (4)
accumulates in kidneys and ear –>
1) nephrotoxicity
2) Ototoxicity (especially with loop diuretics)
3) Neuromuscular blockade
4) Teratogen
Aminoglycosides
Mechanism
Bactericidal
IRREVERSIBLE inhibition of initiation complex through binding of 30S subunit
can cause misreading of mRNA and block translocation
Require O2 for uptake –> ineffective against anaerobes
Aminoglycosides
Clinical use
1) Severe gram - rod infections
- synergistic with B-lactam abx
2) Neomycin for BOWEL SURGERY
Aminoglycosides
Mechanism of resistance (1)
Bacterial transferase enzymes inactivate drug by acetylation, phosphorylation, or adenylation
Tetracyclines
drug names
Tetracycline, doxycycline, minocycline
Tetracyclines
Mechanism
BacterioSTATIC
Bind 30S and prevent attachment of aminoacyl-tRNA
Tetracyclines
administration / metabolism
good PO
Doxy eliminated fecally –> can use in pts with renal failure
others renally excreted
Tetracyclines
Toxicity (5)
1) do not take with MILK or ANTACIDS, or IRON-containing preparations (divalent cations bind drug in gut and inhibit absorption)
2) GI distress
3) Discoloration of teeth and inhibition of bone growth in children < 8yrs
4) Photosensitivity
5) Fungal superinfections
Tetracyclines
Clinical use (4)
1) Borrelia Burgdorferi
2) M. Pneumoniae
3) Rickettsia
4) Chlamydia
Tetracyclines
Mechanism of resistance (1)
Decrease uptake or increased efflux out of bacterial cells by plasmid-encoded transport pumps
Chloramphenicol
mechanism
blocks peptidyl transferase at 50S ribosomal subunit
BacterioSTATIC
Chloramphenicol
Clinical use
1) Meningitis (H. influenzae, N. Meningitis, Strep. Pneumoniae)
2) Rocky Mountain Spotted Fever (Rickettsia, rickettsii)
**Limited use due to severe toxicity (but cheap so used in developing countries)
Chloramphenicol
Toxicity (3)
1) Anemia (dose dependent)
2) Aplastic anemia (dose independent)
3) Gray baby syndrome (in premature infants - lack liver UDP-glucuronyl transferase)
High toxicity
Chloramphenicol
Metabolism / administration
Glucuronidation (hepatic)
PO or IV
Chloramphenicol
Mechanism of resistance (1)
plasmid encoded acetyltransferase inactivates the drug
Clindamycin (Licosamide)
Mechanism
Blocks peptide transfer (translocation) at 50S ribosomal subunit
BacterioSTATIC
Clindamycin
Clinical use (3)
1) Anaerobic infections (bacteroides, C. perfringens) in aspiration pneumonia, lung abscesses, and oral infections
2) Invasive group A strep infections
3) **treats anaerobic infections ABOVE the diaphragm
Clindamycin
Toxicity (2)
1) Pseudomembranous colitis
2) fever, diarrhea