Weaknesses Flashcards
R
Real numbers on the line
Z
Set of integers
{…,-3,-2,-1,0,1,2,3,…}
N
Positive Integers (natural numbers)
1,2,3,4,5,…
Composition Function
h(x) = f(g(x))
or k = g(f(x))
Power Rules
a^x . a^y = a^x+y
(a^x) . y = a^x . y
a^0 = 1
a^-n = 1/a^n
a^1/2 = square root of a
a^m/n = (a^1/n)^m
Linear Function
Polynomial of degree 1
f(x) = mx + c
gradient/slope = m -> crosses y-axis at point (0,c)
Quadratic Equation and Curve
Polynomial of degree 2
ax^2 + bx + c = 0
1. shape: if a > 0 = parabola that opens upward (U)
if a < 0 = parabola that opens downward (n)
2. y-axis: set x = 0 in f(x) -> f(0) (usually just c)
3. x-axis: set y = f(x) = 0 find solution (thru factorisation, completing the square or general formula)
Polynomial Function
Has non-negative powers or positive integer exponent of variable
e.g. y = -2x^2+4x+5 or y = 4x^3+2x^2-4x+8
Demand and Supply Function
Linear
Demand curve: downward sloping
Supply curve: upward sloping
Demand function: expressing quantity demanded in terms of p
Supply function: solve demand function using p for q
Inverse demand function: expressing p (price) in terms of q (quantity)
Inverse supply function: solve inverse demand function using q for p
Equilibrium price (p): quantity demanded = quantity supplied
Equilibrium quantity (q): solve qD or qS with p*
If =/ linear
turn qD and qS quadratic and solve = 0 for equilibrium price
Exponentials
f(x) = a^x (where a is a number)
a^0 = 1, (0,1) only point where a^x crosses y-axis
f(x) = e^x > 1 so increases exponentially and cuts y-axis at 1
Natural Logarithm
Inverse function of e^x
ln x
ln(a.b) = ln a + ln b
ln(a/b) = ln a - ln b
ln(a^b) = b . ln a
What is differentiation for?
- Show how fast a quantity is changing
- FInd maximum/minimum value of a function
f’(x) rules
- d/dx (x^k) = kx^k-1
- d/dx (e^x) = e^x
- d/dx (ln x) = 1/x
- d/dx (sin x) = cos x
- d/dx (cos x) = -sin x
- Sum rule: h(x) = f(x) + g(x) -> h’(x) = f’(x) + g’(x)
- Product rule: h(x) = f(x) x g(x) -> h’(x) = f’(x) x g(x) + f(x) x g’(x)
- Quotient rule: h(x) = f(x)/g(x) -> h’(x) = f’(x) x g(x) - f(x) x g’(x) / g(x)^2
- Chain rule: f(x) = s(r(x)) -> f’(x) = s’(r(x))r’(x)
f(x) = (ax+b)^n -> f’(x) = an(ax+b)^n-1
f(x) = ln(g(x)) -> f’(x) = g’(x) / g(x)
Critical Point
- Local maximum (CP >= f(x))
- Local minimum (CP <= f(x))
- Inflexion point (CP = 0)
Nature of critical point
f”(x) or d^2f/dx^2
if f’(a) = 0
and f”(a) < 0 -> x = a: local maximum of f
and f”(a) > 0 -> x = a: local minimum of f