Unit 10 Exam Flashcards
x^a/b
(^b√x)^a
x^1/n
^n√x
x^0
1 (if x ≠ 0)
1/x^-n
x^n
x^-n
1/x^n
(x/y)^a
x^a/y^a
(x^a)^b
x^ab
x^a/x^b
x^a-b
(xy)^a
x^ay^a
x^a * x^b
x^a+b
graph logbase(x)
as base gets smaller, the y value approaches infinity faster
log(ax)
horizontally compressed by a factor of 1/a
log(x+a)
if a is positive: move left
if a is negative: move right
-log(x)
vertical flip
log(-x)
horizontal flip
log(x)+k
shift up if k > 0
logb(M) + logb(N)
logb(MN)
logb(M) - logb(N)
logb(M/N)
logb(M^k)
k logb(M)
loga(x)
logb(x)/logb(a)
logb(x)/logb(a)
loga(x)
logb(x)= a
b^a=x
b^logb(x)
x
logb(b^x)
x
e^lnx
x
ln e^x
x
x^0
1
(a10^x)(b10^y)
(a)(b)*10^(x+y)
(a10^x)/(b10^y)
(a)/(b)*10^(x-y)
(a10^x)-(b10^y)
shift either parenthesis to have the same exponent (x)
a-b * 10^x