UNIT 1 FORMULA Flashcards
Sin2X=
2sinxcosx
cos2X=
cos^2x-sin^2x. 1-2sin^2x. 2cos^2x-1
0! =
1
(nr) =
r! (n - r)!
Formula for binomial expansion in terms of n and r
(nr) a^n-r X b^r
Product rule
f’(x) X g(x) + g’(x) X f(x)
Quotient rule
g(x)^2
cosecx =
sinx
secx=
cosx
cotx=
tanx
tan^2x=
sec^2x-1
dif of sinx
acosax
dif of cosx
-asinax
dif of tanx
asec^2ax
dif of cosecx
-acosecax cotax
dif of secx
asecax tanax
dif of cotx
-acosec^2ax
did of e^f(x)
f’(x) X e^f(x)
dif of ln[f(x)]
f’(x) X 1/f(x)
dif of log10x
xln10
Integration of y=f’(x)/f(x)
y=ln[f(x)]
sin^2x =
1/2 (1-cos2x)
cos^2x =
1/2(1+cos2x)
f’‘(x) >0
minimum
f’‘(x)<0
maximum
int of cos(ax + b) dx
1/a sin(ax +b) + c
int of sin(ax + b) dx
-1/a cos(ax + b) +c
int of e^(ax+b) dx
1/a e^(ax+b) + c
int of sec^2(ax+b)dx
1/a tan(ax+b) + c
Int of 1/(ax + b) dx
1/a ln(ax+b) + c