Unit 1 Flashcards
Sin pi/6
1/2
Sin 0
0
sin pi/4
1/(radical 2) = (radical 2)/2
Sin pi/3
(radical 3)/2
sin pi/2
1
sin pi
0
sin (3 pi)/2
-1
sin (2 pi)
0
cos 0
1
cos (pi/6)
(radical 3)/2
cos (pi/4)
1/(radical 2) = (radical 2)/2
cos (pi/3)
1/2
cos (pi/2)
0
cos pi
-1
cos (3 pi/2)
0
cos (2 pi)
1
tan 0
0
tan (pi/6)
1/(radical 3) = (radical 3)/3
tan (pi/4)
1
tan (pi/3)
radical 3
tan (pi/2)
undefined
tan ø
in terms of sine and/or cosine
(sin ø)/(cos ø)
cot ø
in terms of sine and/or cosine
1/(tan ø)
csc ø
in terms of sine and/or cosine
1/(sin ø)
sec ø
in terms of sine and/or cosine
1/(cos ø)
Point-slope form of a linear equation
Y-Y1=m(X-X1)
An even function is…
…symmetric with respect to the y-axis, like y=x^2, y=cos x, or y=absolutev(x)
f(-x)=f(x)
An odd function is…
…symmetrical with respect to the origin, like y=x^3, y=sin x, or y=tan x
f(-x)=-f(x)
Two formulas for area of a triangle
A=1/2(bh)
A=1/2(absinC)
Area of a circle
A=(pi)r^2
Circumference of a circle
C=2(pi)r
Volume of a cylinder
V=(pi)r^2(h)
Volume of a cone
V=1/3(pi)r^2(h)
Volume of a sphere
V=4/3(pi)r^3
Surface area of a sphere
A=4(pi)r^2
A tangent line is…
…the line through a point on a curve with slope equal to the slope of the curve at that point.
A secant line is…
…the line connecting two points on a curve.
A normal line is…
…the line perpendicular to the tangent line at the point of tangency.
f(x) is continuous at x=c when…
1) f(c) exists
2) lim f(x) exists; and
x->c
3) lim f(x) = f(c)
x->c