UNIT 1 Flashcards
Escriba la definición de estadística
Es la ciencia que trata los problemas que comprenden variaciones casuales; de la misma manera, se puede decir que es la ciencia de la toma de decisiones a partir de los datos.
¿Cuál es la diferencia entre población y muestra?
La población representa el conjunto de datos completos de individuos u objetos a los que se les observa una característica en particular, la cuál será el objeto de estudio, mientras que, la muestra es un subconjunto de la población, la cual tiene la finalidad de realizar observaciones de la misma
¿Qué es una variable y como se divide?
Es una característica de interés sobre cada elemento de la población o muestra, puede representarse mediante un símbolo o letra. Pueden ser cualitativas (de tipo nominal y ordinal) y también cuantitativas (de tipo discreta y continua).
¿Qué son las escalas de medición y como se dividen?
Conjunto de categorías o niveles que se utilizan para medir y cuantificar diferentes características o variables dentro de un estudio o investigación. Hay 4 tipos: Escala nominal (asigna números o valores sin relación matemática), Escala ordinal (se basa en la jerarquización), Escala de intervalo (no existe un punto inicial), Escala de razón (existe un punto inicial).
¿Qué es un parámetro?
Es un valor numérico que resume todos los datos de una población bajo estudio.
¿Cuáles son los dos métodos que se utilizan para recolectar datos?
Mediante la realización de experimentos (donde el investigador tiene control) y mediante la realización de encuestas (donde el investigador no tiene control).
En estadística; ¿a qué se le llama censo?
A la recopilación de datos sobre una población completa.
¿En qué consiste el muestreo?
Es una herramienta de la investigación científica, cuya función básica es determinar que parte de la población debe examinarse, con la finalidad de hacer inferencias sobre dicha población.
¿Cómo se dividen los métodos de muestreo?
Se dividen en muestreos probabilísticos y no probabilísticos.
Mencione las ventajas y desventajas del muestreo
Ventajas:
-Cuando se usan las técnicas de muestreo, se necesitan estudiar menos individuos, por lo tanto, se requerirán menos recursos.
-La manipulación de los datos es mucho más simple debido a que no se analiza al 100% el universo que contiene a la población.
Desventajas:
-Se introduce un “error controlado” en el resultado, debido a la propia naturaleza del muestreo y a la necesidad de generalizar los resultados, además, se corre el riesgo de introducir “sesgos” debido a una mala selección de la muestra.
Describa las gráficas de barras
Son esenciales para describir datos de manera cualitativa y cuantitativa, las categorías y sus frecuencias se representan por medios de barras cuya longitud representa la frecuencia, las barras se pueden disponer de manera vertical u horizontal, en el eje de las abscisas se coloca la variable, y en el eje de las ordenadas se colocan las frecuencias.
Describa las gráficas de pastel
Son ilustraciones especialmente útiles para mostrar la división de una cantidad total en las partes que le componen.
El círculo completo representa un 100%, mientras que cada sector de este mismo, representa una parte componente del total.
Son particularmente adecuados para variables cualitativas.
Describa las gráficas de línea
Son útiles en diferentes áreas del conocimiento, ya que muestran el cambio de una variable respecto al tiempo.
Para elaborarlo, se coloca en el eje de las abscisas la variable del tiempo y en ele de las ordenadas la variable que se desea medir o la variable medida.
¿Qué es un histograma?
Es una representación gráfica en la distribución de datos numéricos. Se utiliza comúnmente en estadísticas y análisis de datos para visualizar la frecuencia con la que ocurren diferentes valores en un conjunto de datos.
Con base en la teoría de probabilidad ¿Qué es un conjunto?
Un conjunto se refiere a una colección o agrupación de elementos u objetos que pueden ser analizados en relación con su probabilidad de ocurrencia en un evento. En el contexto de la probabilidad, los elementos en un conjunto suelen representar posibles resultados o eventos que pueden ocurrir en un experimento aleatorio.