U3 - Integration Flashcards
Integration and differentiation are…
Inverse operations.
Derivative of F(x) is f(x). Anti-derivative of f(x) is F(x).
What is an indefinite integral (F f(x)dx )?
The integral of f with respect to x’.
If F’(x)=f(x), then F f(x)dx=F(x)+c
Rules for INDEFINITE integrals:
Power rule:
F x^n dx = [1/(n+1)]^n+1 +C (n≠1)
Constant:
F k dx=kx + C
Constant multiple: F kf(x)dx=k F f(x)dx
Sum or difference:
F [f(x)+/-g(x)dx]=F f(x)dx +/- F g(x)dx
What are the SPECIAL FUNCTION RULES for integration?
Euler’s:
F e^x dx=e^x + C
x as denom:
F 1/x dx=ln |x| + C
Cos: F cos(x)dx=sin(x) + C
Sin: F sin(x)dx=-cos(x) + C
Sec^2:
F [sec(x)]^2dx=tan(x) + C
What are the rules for integrating f(ax+b) and INTEGRATION BY SUBSTITUTION?
Euler’s:
F e^(ax+b) dx=(1/a)e^(ax+b) + C (a≠0)
X as denom:
F 1/(ax+b) dx=(1/a) ln |ax+b| + C (a≠0)
F (ax+b)^n dx=(1/a) [(ax+b)^n+1]/(n+1) + C