Types of Welds Flashcards
With this type of welding, the electrode is non-consumable and made of tungsten. It is one of the few types of welding that can be done with no filler metal, using only the two metals being welded together. You can add a filler metal if you desire, but you will have to feed it by hand. A gas tank is necessary with this type of welding to provide the constant flow of gas needed to protect the weld. This means it’s generally better performed indoors and away from the elements.
TIG - Gas Tungsten Arc Welding (GTAW)
This type of welding is similar to MIG welding. In fact, MIG welders can often perform double duty with this type of weld. Just like in MIG welding, a wire that serves as the electrode and the filler metal is fed through your wand. This is where things begin to differ. For this weld, the wire has a core of flux that creates a gas shield around the weld. This eliminates the need for an external gas supply.
Flux Cored Arc Welding
Started in the 1930s but continues to be updated and improved today. It has remained a popular type of welding because it is simple and easy to learn, as well as low cost to operate. However, it doesn’t create the neatest welds, since it splatters easily. Cleanup is usually necessary.
A replaceable electrode “stick” also serves the role of filler metal. An arc is created that connects from the end of the stick to the base metals, melting the electrode into filler metal and creating the weld. The stick is coated in flux that creates a gas cloud when heated up and protects the metal from oxidation. As it cools, the gas settles on the metal and becomes slag.
Since it doesn’t require gas, this process can be used outdoors, even in adverse weather such as rain and wind. It also works well on rusted, painted, and dirty surfaces, making it great for equipment repairs. Different types of electrodes are available and easy to swap, making it simple to weld metals of many different kinds, though it’s not great for thin metals. This welding is a highly skilled process with a long learning curve.
STICK
This weld is a simple form of welding that can easily be performed by new welders. This weld stands for metal inert gas, though it is sometimes called gas metal arc welding (GMAW). It is a quick process that involves the filler metal being fed through the wand, while gas is expelled around it to shield it from outside elements. This means it’s not great for outdoor use. Still, it’s a versatile process and can be used to weld many different types of metal at different thicknesses.
The filler metal is a consumable wire fed from a spool, and it acts as the electrode as well. When the arc is created from the tip of the wire to the base metal, the wire melts, becoming filler metal and creating the weld. The wire is continuously fed through the wand, allowing you to dial in your preferred speed. Done correctly, this welding produces a smooth and tight weld that is visually appealing.
MIG
This type of welding can be used on metals or thermoplastics. As the name implies, it involves the use of a laser as a heat source to create the welds. It can be used on carbon steels, stainless steel, HSLA steels, titanium, and aluminum. It is easily automated with robotics and is therefore used often in manufacturing, such as in the automotive industry.
Laser Beam Welding
This is a type of welding where a high-velocity beam of electrons creates heat through kinetic energy, welding two materials together. This is a highly sophisticated form of welding that is performed by machine, generally in a vacuum.
Electron Beam Welding
This is an advanced process of welding that is used to join the thin edge of two metal plates together vertically. Instead of the weld being applied to the outside of a joint, it will take place in between the edges of the two plates. A copper electrode wire is fed through a consumable metal guide tube that will act as filler metal. When electricity is introduced, the arc is created, and a weld begins at the bottom of the seam and is slowly moved up, creating the weld in place of the seam as it goes. This is an automated process and performed by machine.
Electroslag
This welding is similar to GTAW, but it uses a smaller arc, increasing the precision of the weld. It also uses a different torch, achieving much higher temperatures. Gas is pressurized inside the wand, creating plasma. The plasma is then ionized, making it electrically conductive. This allows the arc to be created, producing incredibly high temperatures that can melt the base metals. This allows plasma arc welding to be performed with no filler metal, another similarity to TIG welding.
Plasma arc welding
This welding is an extremely high-heat form of welding that used to be known as arc-atom welding. This type of welding involves using hydrogen gas to shield two electrodes made of tungsten. It can reach temperatures above those of an acetylene torch and can be performed with or without a filler metal. This is an older form of welding that has been replaced by MIG welding in recent years.
Atomic Hydrogen Welding