Truth Table, Argument Forms, Morgan Transformation Flashcards
Conjunction - P&Q
Special Case = TTT
The combination of P and Q results in P&Q is true
If there T for P, Q, and P&Q = a T goes there.
Always true when both are true
T
F
F
F
Disjunction - P v Q
Special Case = FFF
Opposite of Conjunction
T
T
T
F
Exclusive Disjunction - P w Q
Special Case = TTT and FFF
F
T
T
F
Conditional – P>Q
Only False when P is True and Q is False T F T T
BiConditional – P#Q
Only All True or All False
T
F
F
T
Modus Ponens
Premises - P > Q Premise P -------------------------- Q Valid Argument
Fools Modus Ponens
Premise - P > Q
Premise - Q
—————————
P
Invalid
Modus Tollens
Premise - If P>Q
Premise - ~Q
————————
~P
Valid Argument
Fools Modus Tollens
Premise - If P>Q
Premise - ~P
—————————–
~Q
Invalid Argument
Hypothetical Syllogism
Premise If P>Q
Premise If Q>R
————————-
P>R
Valid
Disjunctive Syllogism
Premise P v Q
Premise ~P
————————
Q
Valid Argument
Constructive Dilemma
Premise P v Q Premise P>R Premise Q>S ----------------------- R or S
Valid
Destructive Dilemma
Premise P>R Premise Q>S Premise ~R or ~S ---------------------------- ~P or ~Q
Valid Argument
De Morgan Transformation
P>Q = ~(~Pv~Q)
~(P>Q) = (~Pv~Q)
PvQ = (~P&~Q)
~(PvQ) = (~P&~Q)