Trigonometry Flashcards
sin(x)
opp/hyp
csc(x)
hyp/opp
cos(x)
adj/hyp
sec(x)
hyp/adj
tan(x)
opp/adj
cot(x)
adj/opp
sin(pi/4)
sqrt(2)/2
sin(pi/6)
1/2
sin(pi/3)
sqrt(3)/2
cos(pi/4)
sqrt(2)/2
cos(pi/6)
sqrt(3)/2
cos(pi/3)
1/2
tan(pi/4)
1
tan(pi/6)
sqrt(3)/3
tan(pi/3)
sqrt(3)
Identity of: csc(x)
1/sin(x)
Identity of: sec(x)
1/cos(x)
Identity of: cot(x)
1/tan(x)
Identity of: tan(x)
sin(x)/cos(x)
Identity of: cot(x)
cos(x)/sin(x)
sin^2(x) + cos^2(x)
1
tan^2(x) + 1
sec^2(x)
1 + cot^2(x)
csc^2(x)
sin(-x)
-sin(x)
cos(-x)
cos(x)
sin(x + 2pi)
sin(x)
cos(x + 2pi)
cos(x)
sin(x + y)
sin(x)cos(y) + cos(x)sin(y)
cos(x + y)
cos(x)cos(y) - sin(x)sin(y)
sin(x - y)
sin(x)cos(y) - cos(x)sin(y)
cos(x - y)
cos(x)cos(y) + sin(x)sin(y)
tan(x + y)
(tan(x) + tan(y))/(1 - tan(x)tan(y))
tan(x - y)
(tan(x) - tan(y))/(1 + tan(x)tan(y))
Double Angle: sin(2x)
2sin(x)cos(x)
Double Angle: cos(2x)
cos^2(x) - sin^x(x)
For cos: cos(2x)
2cos^2(x) - 1
For sin: cos(2x)
1 - 2sin^2(x)
Half-angle: cos^2(x)
(1 + cos(2x))/2
Half-angle: sin^2(x)
(1 - cos(2x))/2
sin(x)cos(x)
1/2[sin(x + y) + sin(x - y)]
cos(x)cos(y)
1/2[cos(x + y) + cos(x - y)]
sin(x)sin(y)
1/2[cos(x - y) - cos(x + y)]
D: sin(x) and cos(x)
(-inf, inf)
R: sin(x) and cos(x)
[-1,1]
D: tan(x) and cot(x)
(-inf, inf)
R: tan(x) and cot(x)
(-inf, inf)
D: csc(x) and sec(x)
(-inf, inf)
R: csc(x) and sec(x)
(-inf, -1] U [1, inf)