Trigonometric Identities Flashcards
which function does sin have a reciprocal relationship with?
csc
which function does cos have a reciprocal relationship with?
sec
which function does tan have a reciprocal relationship with?
cot
which function does csc have a reciprocal relationship with?
sin
which function does sec have a reciprocal relationship with?
cos
which function does cot have a reciprocal relationship with?
tan
power reduction of sin^2(u)
1/2(1-cos(2u))
power reduction of cos^2(u)
1/2(1+cos(2u))
power reduction of tan^2(u)
(1-cos(2u)) / (1+cos(2u))
double angle identity: sin(2u)
2sinucosu
double angle identity: cos(2u)
cos^2(u) - sin^2(u)
pythagorean identity: tan^2(u)
sec^2(u) - 1
pythagorean identity: sec^2(u)
tan^2(u) + 1
substitution: sqrt(a^2 + u^2)
u = (a)(tan(theta))
substitution: sqrt(a^2 - u^2)
u = (a)(sin(theta))
substitution: sqrt(u^2 - a^2)
u = (a)(sec(theta))
arc length s of curve f(x)
s = definite integral from a to b of sqrt(1 + (f’(x))^2) dx
Trap (n) = , also delta x =
(1/2)(delta x)[f(x,0) + 2f(x,1) + 2f(x,2) + … … + 2f(x,n-1) + f(x,n)]
delta x = (upper bound of integral - lower bound of integral)/(number of sub intervals ie terms in series)
Mid (n) = , also delta x =
(delta x)[f(x,1) + f(x,2) … … + f(x,n)]
delta x = (upper bound of integral - lower bound of integral)/(number of sub intervals ie terms in series)
Simp (n) = , also delta x =
(1/3)(delta x)[f(x,0) + 4f(x,1) + 2f(x,2) + 4f(x,3) + 2f(x,4) … … 4f(x,n-1) + f(x,n)]
n must be an even number.
separable differential equation
dy/dx = (f(y))(g(x))
when derivative is isolated the other side of the equation can be factored so that one factor is a function of only y and the other factor is a function of only x.
define implicit form of a differential equation
implicit form is not solved for y in terms of x (y is not completely isolated on one side)
define explicit form of a differential equation
explicit form is solved for y in terms of x (y is completely isolated on one side)
Integral Identity: integral of u^n du , when n does not equal 1
u^(n+1) / n+1 + C
Integral Identity: integral of u^-1 du
ln|u| + C
Integral Identity: integral of e^u
e^u + C
Integral Identity: integral of a^u , when a does not equal 1
(1 / (lna) ) (a^u) + C
Trig Integral Identity: integral of cos(u)
sin(u) + C
Trig Integral Identity: integral of sin(u)
-cos(u) + C
Trig Integral Identity: integral of (sec u)(tan u) du
“a sea can tan if a sea can can.”
sec(u) + C
Trig Integral Identity: integral of sec^2(u) du
“A sea can square its t….”
tan(u) + C
“A sea can square its toes”
Trig Integral Identity: integral of (csc u)(cot u) du
“a cosy cot can if a cosy can can’t.”
-csc(u) + C
Trig Integral Identity: integral of csc^2(u) du
“a cozy can square without a cot there.”
-cot(u) + C
Trig Integral Identity: integral of tan(u) du
“that tan has no lines cuz!”
-ln| cos(u) | + C
Trig Integral Identity: integral of cot(u) du
“that cot lines its signs!”
ln| sin(u) | + C
Trig Integral Identity: integral of sec(u) du
“A sea can always lines it’s sea cans with tans.”
ln| sec(u) + tan(u) | + C