Trig Identities Flashcards
What are the Pythagorean identities?
sin2x + cos2x = 1
tan2x + 1 = sec2x
1 + cot2x = csc2x
What are the reciprocal identities?
sec x = 1 / cos x
csc x = 1 / sin x
tan x = sin x / cos x
cot x = cos x / sin x
cot x = 1 / tan x
What are the double-angle formulas?
What is the double-angle formula for sine?
sin 2x = 2 sinx cosx
What are the double-angle formulas for cosine?
cos 2x = cos2x - sin2x
= 2cos<sup>2</sup>x - 1 = 1 - sin<sup>2</sup>x
What are the Even-Odd Identities?
sin (-x) = - sin x
cos (-x) = cos x
tan (-x) = - tan x
What are the Cofunction Identities?
sin( (π/2) - u) = cos u
cos( (π/2) - u) = sin u
tan( (π/2) - u) = cot u
cot( (π/2) - u) = tan u
sec( (π/2) - u) = csc u
csc( (π/2) - u) = sec u
What are the Addition and Subtraction Formulas for Sine?
sin(s + t) = sin s cos t + cos s sin t
sin(s - t) = sin s cos t - cos s sin t
What are the Addition and Subtraction Formulas for Cosine?
cos(s + t) = cos s cos t - sin s sin t
cos(s - t) = cos s cos t + sin s sin t
What are the Addition and Subtraction Formulas for Tangent?
tan(s + t) = (tan s + tan t) / (1 - tan s tan t)
tan(s - t) = (tan s - tan t) / (1 + tan s tan t)
What are the formulas for lowering powers?
sin2x = (1 - cos 2x) / 2
cos2x = (1 + cos 2x) / 2
tan2x = (1 - cos 2x) / (1 + cos 2x)
What are the half-angle formulas?
sin(u/2) = ± ((1 - cos u)/2)½ note this is a square root
cos(u/2) = ± ((1 + cos u)/2)½ note this is a square root
tan(u/2) = (1 - cos u) / sin u
tan(u/2) = sin u / (1 + cos u)
What are the product-to-sum formulas?
sin u cos v = ½[sin(u + v) + sin (u - v)]
cos u sin v = ½[sin(u + v) - sin (u - v)]
cos u cos v = ½[cos(u + v) + cos(u - v)]
sin u sin v = ½[cos(u - v) - cos(u + v)]
What are the sum-to-product formulas?
sin x + sin y = 2 sin ((x + y) / 2) cos ((x - y) / 2)
sin x - sin y = 2 cos ((x + y) / 2) sin ((x - y) / 2)
cos x + cos y = 2 cos ((x + y) / 2) cos ((x - y) / 2)
cos x - cos y = -2 sin ((x + y) / 2) sin ((x - y) / 2)
What are the sums of sines and cosines?
If A and B are real numbers, then
A sin x + B cos x = k sin (x + Ø)
where
k = (A2 + B2)½ note this is a square root
and Ø satisfies
cos Ø = A / ((A2 + B2)½) note this is a square root
sin Ø = B / ((A2 + B2)½) note this is a square root