Trig Identities Flashcards
derivative of sin(x)
cos(x)
derivative of cos(x)
-sin(x)
integral of 1/(1+x^2)
arctanx
derivative of arctanx
1/(1+x^2)
derivative of tan(x)
sec(x)^2
integral of sec(x)^2
tan(x)
derivative of sec(x)
sec(x)tan(x)
integral of sec(x)tan(x)
sec(x)
derivative of tan(x)^2
2tan(x)sec(x)^2
integral of 2tan(x)sec(x)^2
tan(x)^2
derivative of sin(x)^2
2sin(x)cos(x)
integral of 2sin(x)cos(x)
sin(x)^2
derivative of csc(x)^2
-2cot(x)csc(x)^2
integral of -2cot(x)csc(x)^2
csc(x)^2
derivative of ln(x)
1/x
integral of 1/x
ln(x)
sec(x)^2=?
tan^2+1
cos(x)^2+sin(x)^2=?
1
tan(x)^2
sec(x)^2-1
sin(2x)
2sin(x)cos(x)
cos(2x)
2cos(x)^2-1
cos(x)^2
1+cos(2x)/2
sin(x)^2
(1 - cos(2x))/2
1 + cot²(x)
csc²(x)
cot²(x)
csc²(x) - 1
∫cos(x)dx
sin(x) + C
∫sin(x)dx
-cos(x) + C
∫sec²(x)dx
tan(x) + C
∫csc²(x)dx
-cot(x) + C
∫sec(x)tan(x)dx
sec(x) + C
∫csc(x)cot(x)dx
-csc(x) + C
∫tan(x)dx
ln|sec(x)| + C
∫cot(x)dx
ln|sin(x)| + C
∫sec(x)dx
ln|sec(x)-tan(x)| + C
∫csc(x)dx
ln|csc(x)-cot(x)| + C
√(a²-x²)
asinΘ
√(x²+a²)
atanΘ
√(x²-a²)
asecΘ
odd power of sin/cos
split off sin(x), u = cos(x)
even power of sin/cos
split off sin^2(x), use (1-cos2x)/2
even power of sec
split off sec^2(x), u = tan(x)
odd power of sec/tan
split of tan(x)sec(x), u = sec(x)