Transport in plants Flashcards
How is the xylem vessel adapted to its function?
- No cytoplasm, organelles or nucleus to obstruct the flow of water.2. Cells form one continuous vessel with no end walls to obstruct flow of water.3. Walls of xylem are lignified to prevent vessels from collapsing when under pressure from transpiration stream.4. Vessels are very narrow to allow for effective capillary action and to prevent water column from breaking.5. Lignin deposited in annular, spiral or reticulate pattern to allow for vertical growth.6. Fully lignified xylem vessels are pitted to allow for movement of water in and out of xylem vessels.
How are phloem sieve tube elements adapted to their function?
- Cytoplasm and organelles are packed to the sides of the sieve tube elements to minimise their obstruction to the flowing sucrose.2. Lack of organelles like nuclei, mitochondria, ribosomes… allow for this tight packing.3. Cells are alive to allow for transport of nutrients in both directions.
How are phloem companion cells adapted to their function?
- Dense cytoplasm packed with mitochondria and ribosomes to create enough nutrients and energy to keep itself and neighbouring sieve tube elements alive.2. Located adjacent to sieve tube elements and are connected to sieve tube elements by plasmodesmata so nutrients can reach sieve tube elements by diffusion.3. Has the ability to load lots of sucrose via active transport which subsequently diffuses into sieve tube elements.
Why do plants need transport systems?
- Plants have a small surface area to volume ratio, therefore only the epithelial cells are able to obtain water and nutrients from surrounding environment. Cells inside the plant need a transport system in order to have a constant supply of water and nutrients in order to survive.- Roots can easily obtain water and minerals, but cannot produce sugars. Leaves produce sugars, but cannot easily obtain water and minerals.- Transport system evenly distributes sugars, water and minerals around the plant.
How is vascular tissue distributed in roots of dicotyledons?
- Vascular tissue is found in the centre of the root, surrounded by the cortex.- Xylem vessels and phloem tissue found in distinctive and different vascular bundles. Xylem tissue usually arranged in a cross-like shape, with phloem tissue located between the arms of the cross.- Just below the endodermis is a layer of meristem called the pericycle which allows for further growth of the roots.- This arrangement provides the strength to withstand the large pull forces experienced by the roots.
How is vascular tissue distributed in stems of dicotyledon?
- Vascular tissue is usually found in discrete bundles around the peripheral of young stems but become continuous in older stems (rings of trees).- The vascular bundles are arranged so that there is a layer of support tissue, followed by a layer of phloem tissue, followed by a layer of cambium (produces new vascular tissue) followed by the xylem vessels.
How is vascular tissue distributed in leaves?
- Dicotyledons usually have branching vessels in leaves where the vascular tissue is found.- There is usually a midrib that branches out into smaller vessels.- The vascular tissue is usually arranged so that a layer of support tissue is followed by xylem tissue which is followed by phloem tissue. The xylem vessels are usually arranged in a C-shape.
What is water potential?
A measure of the total potential energy water molecules have in system. It determines how likely it is for water to be lost from a system by diffusion down a water potential gradient .
How does water move between cells?
Water moves between cells by osmosis down the water potential gradient from an area of high water potential to an area of low water potential.
What is the Symplast pathway?
The symplast pathway involves water moving through the cell membranes and into the cytoplasm of plant cells. The cytoplasm of cells are connected by plasmodesmata, forming a continuous cytoplasm. The water can thus diffuse from one cell to the next down the water potential gradient.
What is the Apoplast pathway?
Water never directly enters the cells. Instead, water moves along the water-filled spaces between the cellulose fibres that make up the cell walls by diffusion.
What is the Vacuolar pathway?
The vacuolar pathway is similar to the symplast pathway in the sense that it also involves the water crossing the plasma membrane. However, rather than being restricted to the cytoplasm, water also passes through the tonoplast and the vacuoles in plant cells.
How are root hair cells adapted to their function?
- Thin cell walls to decrease distance water and ions need to travel in order to enter the cells.2. Hair-like projection dramatically increases surface area of root hair cells and thus make them more efficient at active transport and osmosis.3. Lots of mitochondria to produce ATP for use in active transport of mineral ions from the soil.
How does water enter the root?
The root hair cells are constantly loading mineral ions from the soil by active transport, which involves energy from ATP. This process lowers the water potential of the root hair cells. Water moves into the root hair cells, across the plasma membrane by osmosis down the water potential gradient.
How does the water move across the cortex and into the xylem?
- Mineral ions are constantly being loaded into the xylem vessels by the endodermal cells through the process of active transport. - This lowers the water potential inside the xylem vessels and so water moves into xylem vessels by osmosis. - This subsequently lowers water potential in cells directly adjacent to the xylem vessels and sets up a water potential gradient across the whole cortex which moves water along the symplast pathway from root hair cells to xylem. - Water from the other 2 pathways eventually join symplast pathway.