Transition metals and rxn's of aq ions Flashcards
ligand
molecule/ion w l.p of e- that forms co-ordinate bonds w metals (lewis base = e- lp donor)
complex
central metal atom/ion w co-ordinately bonded ligands
monodentate NH3 substitution rxn w hexaqua Co2+ ion eqn
CON
[Co(H₂O)6]²+ + 6NH3 –> [Co(NH3)6]²+ + 6H₂O
no change in CON (6) neutral ligands
monodentate NH3 substitution rxn w hexaqua Cu2+ ion eqn
CON
colour change
incomplete substitution
[Cu(H₂O)6]²+ (aq) + 4NH3 (aq) –> [Cu(NH3)4(H₂O)2]²+ (aq) + 4H₂O (l)
from blue sol to deep blue sol
no change in CON (6) neutral ligands
monodentate Cl- substition rxn w hexaqua Cu2+ eqn
CON
colour change
shape change
[Cu(H₂O)6]²+ + 4Cl- –> [CuCl4]²- + 6H₂O
blue sol to yellow sol
CON changes from 6 to 4 as Cl- are larger and only 4 can bond to metal ion
octahedral to tetrahedral
monodentate Cl- substition rxn w hexaqua Co2+ eqn
CON
shape change
[Co(H₂O)6]²+ + 4Cl- –> [CoCl4]²- + 6H₂O
CON changes from 6 to 4 as Cl- are larger and only 4 can bond to metal ion
octahedral to tetrahedral
monodentate Cl- substition rxn w hexaqua Fe3+ eqn
CON
colour change
shape change
[Fe(H₂O)6]3+ + 4Cl- –> [FeCl4]- + 6H₂O
violet sol to yellow sol
CON changes from 6 to 4 as Cl- are larger and only 4 can bond to metal ion
octahedral to tetrahedral
monodentate Cl- substition rxn w hexaqua Al3+ eqn
CON
colour change
shape change
[Al(H₂O)6]3+ + 4Cl- –> [AlCl4]- + 6H₂O
colourless sol to colourless sol
CON changes from 6 to 4 as Cl- are larger and only 4 can bond to metal ion
octahedral to tetrahedral
bidentate ligand substitution rxn w ethane-1,2-diamine and hexaqua Cu eqn
CON
[Cu(H₂O)6]²+ + 3NH₂CH₂CH₂NH₂ –> [Cu(NH₂CH₂CH₂NH₂)3]²+ + 6H₂O
no change in CON as there’s 3 ligands and each forms 2 coordinate bonds so 3x2=6
bidentate ligand substitution rxn w ethanedioate and hexaqua Cu eqn
CON
[Cu(H₂O)6]2+ + 3C₂O4²- –> [Cu(C₂O4)3]4- + 6H₂O
no change in CON as there’s 3 ligands and each forms 2 coordinate bonds so 3x2=6
multidentate ligand substitution rxn w EDTA4- and hexaqua Cu eqn
charge?
[Cu(H₂O)6]²+ + EDTA4- –> [Cu(EDTA)]²- + 6H2O
2+ + 4- = -2 charge change
small ligands (H₂O and NH3) complex shape, CON, angles, isomerism and give an eg
octahedral shape
CON 6
90 adjacent ligands, 180 opp
CisTrans isomerism eg. [CrCl₂(H₂O)4]+
bidentate ligands isomerism
optical isomerism
pair of enantomers - arrangement of 2 coordinate bonds for each ligand resulting in non superimposable mirror images
chelate effect
eg.
enthalpy change is aprox 0 why?
how does the rxn occur?
substitution of monodentate w bi/multidentate ligand results in more stable complex
eg. [Cu(NH3)4(H2O)2]2+ + 2 NH2CH2CH2NH2 –> [Cu(NH2CH2CH2NH2)2(H2O)2]
2+ + 4NH3
Cu–N bonds formed have similar enthalpy
same number of bonds broken and made
entropy change is positive. 3 to 5 molecules, disorder inc bc more
particles formed
free-energy change is -ve
Larger ligand Cl- shape, CON, angle
tetrahedral 109.5
CON 4
Pt²+ and Ni+ complexes shapes, CON, angle, isomerism
square planar 90
CON 4
CisTrans isomers - eg. Cisplatin and Transplatin
Ag+ complexes shape, CON, angle
Linear
CON 2
180
eg. [Ag(NH3)₂]+ in tollens reagent
vanadium Oxidation state +5 colour
VO₂+
yellow solution (you)
vanadium Oxidation state +4 colour
VO²+
blue solution (better)
vanadium Oxidation state + 3 colour
V 3+
green solution (get)
vanadium Oxidation state +2 colour
V²+
violet solution (vanadium)
effect of ligands on redox potential
standard electrode potentials measured in aq sol –> ions surrounded by water ligands.
other ligands make RP larger/smaller depends on how well they bind to metal ion
effect of pH on redox potential
easier to oxidise in alkaline conditions
easer to reduce in acidic conditions
reduction of [Ag(NH3)₂]+ to metallic silver half eqn
[Ag(NH3)₂]+ + e- –> Ag + 2NH3
ox half eqn of aldehyde (ethanal) to ___
carboxylic acid (ethanoic acid)
CH3CHO + H2O –> CH3COOH + 2H+ + 2e-
redox eqn: MnO4- in acidic conditions - which acid is used
dilute H2SO4
not HCl - MnO4- would oxidise Cl- to Cl2 –> would affect vol KMnO4 req (smaller)
not conc H2SO4 or HNO3 - theyre ox agents –> would affect vol of KMnO4 req (smaller)
not CH3COOH - weak so wont provide the 8H+ req
Fe2+ with MnO4- redox titration overall eqn
5Fe2+ + MnO4- + 8H+ –> 5Fe3+ + Mn2+ + 4H2O
purple to colourless
if Fe (0) used to redox titration w MnO4-
react Fe (0) w H2SO4 to oxidise it to Fe2+
if Fe (3+) used to redox titration w MnO4-
react Fe (3+) w Zn to reduce it to Fe2+
C2O4 2- (forms 2 CO2) with MnO4- (forms Mn 2+) redox titration overall eqn
2MnO4- + 16H+ + 5C2O4 2- –> 10CO2 + 2Mn 2+ + 8H2O
V2O5 (heterogeneous catalyst) in contact process eqns
overall: 2SO2 + O2 –> 2SO3
step 1: SO2 + V2O5 –> SO3 + V2O4
step 2: 2V2O4 + O2 –> 2V2O5
I- and S2O8 2- catalysed by Fe2+ (homogeneous catalyst) rxn eqns
why is rxn slow before cat added
why Zn2+ dont catalyse rxn
overall: S2O8 2- + 2I- –> 2SO4 2- + I2
step 1: 2Fe 2+ + S2O8 2- –> 2Fe 3+ + 2SO4 2-
step 2: 2Fe 3+ + 2I- –> 2Fe 2+ + I2
2 -ve ions repel = high Ea
Zn ions hv only 1 oxidation state, Zn2+ is the only ion
ox eqn C2O4 2- to 2 CO2
C2O4 2- –> 2CO2 + 2e-
[Fe(H2O)6]2+ colour
green sol
[Cu(H2O)6]2+ colour
blue sol
[Al(H2O)6]3+ colour
colourless sol
[Fe(H2O)6]3+ (s) colour
pale violet seen in solid hydrated
salts that contain these complexes
[Fe(H2O)6]3+ in soloution colour
yellow brown sol due to hydrolysis
hexa aqua cu 2+ rxn w limited OH- (from NaOH)
Type of rxn
OH acts as what and why
[Cu(H2O)6]2+ (aq) + 2OH- (aq) –> Cu(OH)2(H2O)4 (s) + 2H2O (l)
blue sol to blue ppt formed
deprotonation acid-base rxn
OH- acts as BL base (accepts H+)
hexa aqua iron (II) rxn w limited OH- (from NaOH)
[Fe(H2O)6]2+ (aq) + 2OH- (aq) –> Fe(OH)2(H2O)4 (s) + 2H2O (l)
green sol to green ppt formed
deprotonation acid-base rxn
OH- acts as BL base
hexa aqua iron (III) rxn w limited OH- (from NaOH)
[Fe(H2O)6]3+ (aq) + 3OH- (aq) –> Fe(OH)3(H2O)3 (s) + 3H2O (l)
pale violet sol to brown ppt
deprotonation acid-base rxn
OH- acts as BL base
hexa aqua Al 3+ rxn w limited OH- (from NaOH)
[Al(H2O)6]3+ (aq) + 3OH- (aq) –> Al(OH)3(H2O)3 (s) + 3H2O (l)
colourless sol to white ppt
deprotonation acid-base rxn
OH- acts as BL base
Al(H2O)3(OH)3 rxn w excess OH- alkali (from NaOH)
Al(H2O)3(OH)3 (s) + OH- (aq –> [Al(OH)4]- (aq) 3 H2O
white ppt to colourless sol
re-dissolves to give colourless sol
amphoteric - here acts as acid
Al(H2O)3(OH)3 rxn w excess acid
Al(H2O)3(OH)3 (s) + 3H+ (aq) –> [Al(H2O)6]3+ (aq)
white ppt to colourless sol
amphoteric - here acts as a base
hexa aqua Cu2+, Fe2+, Fe3+ rxn w excess OH- (from NaOH)
no further rxn
hexa aqua cu 2+ rxn w limited NH3
[Cu(H2O)6]2+ (aq) + 2NH3 (aq) –> Cu(OH)2(H2O)4 (s) + 2NH4+ (aq)
blue sol to blue ppt formed
deprotonation acid-base rxn
NH3 acts as BL base
hexa aqua iron (II) rxn w limited NH3
[Fe(H2O)6]2+ (aq) + 2NH3 (aq) –> Fe(OH)2(H2O)4 (s) + 2NH4+ (aq)
green sol to green ppt formed
deprotonation acid-base rxn
NH3 acts as BL base
hexa aqua iron (III) rxn w limited NH3
[Fe(H2O)6]3+ (aq) + 3NH3 (aq) –> Fe(OH)3(H2O)3 (s) + 3NH4+ (aq)
pale violet sol to brown ppt
deprotonation acid-base rxn
NH3 acts as BL base
hexa aqua Al 3+ rxn w limited NH3
[Al(H2O)6]3+ (aq) + 3NH3 (aq) –> Al(OH)3(H2O)3 (s) + 3NH4+ (aq)
colourless sol to white ppt
deprotonation acid-base rxn
NH3 acts as BL base
Cu(OH)2(H2O)4 rxn w excess NH3 (aq)
Cu(OH)2(H2O)4 (s) + 4 NH3 (aq) –> [Cu(NH3)4(H2O)2]2+ (aq) + 2H2O (l) + 2OH- (aq)
blue sol to deep blue sol
incomplete substitution
NH3 acts as lewis base (e- pair donor)
hexa aqua Fe2+, Fe3+, Al3+ rxn w excess NH3
no further rxn
hexa aqua Cu 2+ rxn w carbonate ions CO3 2- (from Na2CO3)
type of rxn
[Cu(H2O)6]2+ (aq) + CO3 2- (aq) –> CuCO3 (s) + 6H2O (l)
blue sol to blue/green ppt
precipitation rxn
insoluble metal carbonate
hexa aqua Fe 2+ rxn w carbonate ions CO3 2- (from Na2CO3)
type of rxn
[Fe(H2O)6]2+ (aq) + CO3 2- (aq) –> FeCO3 (s) + 6H2O (l)
green sol to green ppt
precipitation rxn
insoluble metal carbonate
hexa aqua Fe 3+ rxn w carbonate ions CO3 2- (from Na2CO3)
type of rxn
2[Fe(H2O)6]3+ (aq) + 3CO3 2- (aq) –> Fe(H2O)3(OH)3 (s) + 3CO2 (g) + 3H2O (l)
violet sol to brown ppt + bubbles of gas CO2
acidity rxn
hydrated metal hydroxide
hexa aqua Al 3+ rxn w carbonate ions CO3 2- (from Na2CO3)
type of rxn
2[Al(H2O)6]3+ (aq) + 3CO3 2- (aq) –> Al(H2O)3(OH)3 (s) + 3CO2 (g) + 3H2O (l)
colourless sol to white ppt + bubbles of gas CO2
acidity rxn
hydrated metal hydroxide
gen eqn hydrolysis rxns for 2+ ion
[M(H2O)6]2+ + H2O rev arrow [M(H2O)5(OH)]+ + H3O+
weak acidic sol
gen eqn hydrolysis rxn for 3+ ion
[M(H2O)6]3+ + H2O rev arrow [M(H2O)5(OH)]2+ + H3O+
[Fe(H2O)4(OH)2] in air
[Fe(H2O)3(OH)3] colour darkens due to oxidation
[Fe(H2O)4(OH)2] rxn w excess acid
basic metal hydroxide
[Fe(H2O)6]2+
green ppt to green sol
[Fe(H2O)3(OH)3] rxn w excess acid
basic metal hydroxide
[Fe(H2O)6]3+
brown ppt to orange sol
[Cu(H2O)4(OH)2] rxn w excess acid
basic metal hydroxide
[Cu(H2O)6]2+
blue ppt to blue sol
Explain why an aq sol containing [Fe(H2O)6]3+ has lower pH than an aq sol containing [Fe(H2O)6]2+
Fe3+ smaller than Fe2+
has a higher charge-density ratio
is more polarising so more O-H bonds in water ligand break
more H+ released