TOPOLOGIES Flashcards

UNE FICHES DE REVISION POUR MON EXAMEN ET ME PROPOSER DES EXO DE LA MOIN COMPLEXES E LA PLUS DIFFICILE

1
Q
A
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Qu’est-ce qu’une distance sur un ensemble E?

A

Une application d : E × E → R+ vérifiant :
* d(x, y) = 0 ⇐⇒ x = y
* d(x, y) = d(y, x) (symétrie)
* d(x, z) ≤ d(x, y) + d(y, z) (inégalité triangulaire)

Ces conditions sont essentielles pour définir une distance.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Comment définit-on un espace métrique?

A

Un ensemble E muni d’une distance d.

Cela implique que les éléments de E peuvent être mesurés par la distance d.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Quel est un exemple de distance usuelle sur R?

A

d(x, y) = |x - y|.

Cette distance est communément utilisée dans l’analyse réelle.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Quelle est la définition de la distance discrète?

A

d(x, y) =
* 1 si x ≠ y
* 0 si x = y.

Cette distance ne mesure que si les points sont égaux ou non.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Qu’est-ce qu’une distance équivalente?

A

Deux distances d1 et d2 sur un ensemble E sont équivalentes s’il existe α, β ∈ R*+ tels que
* αd1(x, y) ≤ d2(x, y) ≤ βd1(x, y).

Cela signifie que les deux distances mesurent des concepts similaires de proximité.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Qu’est-ce qu’un sous-espace métrique?

A

Une partie non vide F d’un espace métrique (E, d) avec la restriction dF = d|F × F.

Le sous-espace hérite de la structure métrique de l’espace E.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Comment définit-on une boule ouverte dans un espace métrique?

A

B(a, r) = {x ∈ E / d(a, x) < r}.

Cela représente tous les points x qui sont à une distance inférieure à r du point a.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Quelle est la définition d’une boule fermée?

A

Bf(a, r) = {x ∈ E / d(a, x) ≤ r}.

Cette définition inclut le point a et tous les points à une distance r ou moins.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Qu’est-ce qu’une sphère dans un espace métrique?

A

S(a, r) = {x ∈ E / d(a, x) = r}.

La sphère contient tous les points qui sont exactement à une distance r du point a.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Comment définit-on le diamètre d’une partie A d’un espace métrique?

A

δ(A) = sup {d(x, y) / (x, y) ∈ A × A}.

Le diamètre mesure la plus grande distance entre deux points dans A.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Quand dit-on qu’une partie A est bornée?

A

Si δ(A) est fini.

Cela signifie qu’il existe une distance maximale entre les points de A.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Qu’est-ce qu’une application bornée?

A

Une application f : X → E est bornée si f(X) est une partie bornée de (E, d).

Cela signifie que les images de tous les éléments de X dans E ne s’étendent pas à l’infini.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Quelle est la distance de convergence uniforme entre deux applications f et g?

A

d∞(f, g) = sup {d(f(x), g(x)) / x ∈ X}.

Cette distance mesure la plus grande différence entre les valeurs des deux fonctions sur l’ensemble X.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

What is the distance d∞ on Fb(X, E)?

A

d∞(f, g) = sup d(f(x), g(x)) for x ∈ X

This distance is called the distance of uniform convergence.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

What defines an open set O in a metric space (E, d)?

A

For every a ∈ O, there exists a ball B(a, r) contained in O for some r > 0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

What is the definition of a closed set F in a metric space (E, d)?

A

The complement of F in E is an open set in (E, d)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

What are the open sets in a metric space?

A

E and ∅ are open sets in (E, d)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

What is the proposition regarding open balls in a metric space?

A

Every open ball B(a, r) in (E, d) is an open set

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

Fill in the blank: The complement of a closed ball Bf(a, r) is an ______.

A

open set

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

What is the relationship between open intervals and open sets in R?

A

Every open interval in R is an open set

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

What is the relationship between closed intervals and closed sets in R?

A

Every closed interval in R is a closed set

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q

True or False: The negation of ‘A is an open set’ is ‘A is a closed set’.

A

False

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
24
Q

Provide an example of a set that is neither open nor closed in R.

A

A = [0, 1[ is neither open nor closed

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
25
Q

What is the proposition about the union of open sets?

A

The union of any family of open sets is an open set

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
26
Q

What is the corollary regarding spheres in a metric space?

A

The sphere S(a, r) is a closed set in (E, d)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
27
Q

What is true about the intersection of a finite number of open sets?

A

The intersection of a finite number of open sets is an open set

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
28
Q

What is the proposition regarding closed sets?

A

The intersection of any family of closed sets is a closed set

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
29
Q

What are the three fundamental properties of open sets in a metric space?

A
  • E and ∅ are open sets
  • Any union of open sets is an open set
  • Any finite intersection of open sets is an open set
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
30
Q

Define a topology T on a set E.

A

T is a family of subsets of E satisfying: E and ∅ are in T, any union of elements of T is in T, and any finite intersection of elements of T is in T

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
31
Q

What is an example of a discrete topology?

A

T = (E) is the discrete topology on E

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
32
Q

What is a neighborhood of a point a in a metric space?

A

A set V is a neighborhood of a if there exists r > 0 such that B(a, r) ⊂ V

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
33
Q

What is the relationship between neighborhoods and open sets?

A

Every open set containing a is a neighborhood of a

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
34
Q

What properties do neighborhoods of a point a have?

A
  • Every neighborhood of a contains a
  • If V ⊂ W and V is a neighborhood of a, then W is also a neighborhood of a
  • A finite intersection of neighborhoods of a is a neighborhood of a
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
35
Q

What does it mean for a metric space to be separated?

A

For distinct points a and b, there exist neighborhoods V of a and W of b such that V ∩ W = ∅

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
36
Q

What is the definition of a neighborhood of a point a in a metric space?

A

A neighborhood of a point a is a set B(a, r) for some r > 0.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
37
Q

If W is a neighborhood of a point a, what can be concluded?

A

B(a, r) ⊆ W.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
38
Q

What can be said about a finite number of neighborhoods V1, …, Vn of a point a?

A

There exists ri > 0 such that B(a, ri) ⊆ Vi for all i = 1, …, n.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
39
Q

What is the relationship between r and ri when defining a neighborhood of a point a?

A

r = min(ri) > 0.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
40
Q

What is the conclusion about the neighborhoods V1, …, Vn?

A

B(a, r) ⊆ ∩_{i=1}^n Vi.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
41
Q

What is the proposition regarding a subset O of a metric space?

A

O is open if and only if it is a neighborhood of each of its points.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
42
Q

What does it mean for a point x to be interior to a set A?

A

A is a neighborhood of x.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
43
Q

What is the notation for the interior of a set A?

A

The interior of A is denoted by A°.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
44
Q

If A is a subset of a metric space, what can be said about its interior?

A

A ⊆ A°.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
45
Q

What is the definition of adherence of a set A in a metric space?

A

A point x is adherent to A if B(x, r) ∩ A ≠ ∅ for all r > 0.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
46
Q

What is the notation for the adherence of a set A?

A

The adherence of A is denoted by A̅.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
47
Q

What is the relationship between a point x and set A for x to belong to A?

A

x ∈ A if and only if for every neighborhood V of x, V ∩ A ≠ ∅.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
48
Q

What is the definition of a closed set in a metric space?

A

A set A is closed if A̅ = A.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
49
Q

What is the definition of a dense subset in a metric space?

A

A subset A is dense in E if A̅ = E.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
50
Q

What is the definition of the boundary of a set A?

A

Fr(A) = A̅ ∩ ∁A.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
51
Q

What are isolated points in a set A?

A

A point x ∈ A is isolated if there exists a neighborhood V of x such that V ∩ A = {x}.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
52
Q

What are accumulation points in a set A?

A

A point x ∈ E is an accumulation point of A if every neighborhood of x contains an infinite number of points of A.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
53
Q

What is the definition of the induced topology on a subset A of a metric space E?

A

The topology on A is defined as dA = d|A×A.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
54
Q

What is the definition of the product topology on a product of metric spaces?

A

The topology of the product space E = E1 × … × En is defined using distances δ∞, δ1, or δ2.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
55
Q

What is the definition of a limit in the context of metric spaces?

A

f(x) tends to l as x tends to x0 if for every neighborhood V of l, there exists a neighborhood U of x0 such that f(U) ⊆ V.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
56
Q

What does it mean for a function f to be continuous at a point x0?

A

For every ε > 0, there exists η > 0 such that dE(x, x0) < η implies dF(f(x), l) < ε.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
57
Q

What is the definition of the limit of a function f at a point x0?

A

l = lim f(x) as x approaches x0 if for every neighborhood V of l, there exists a neighborhood U of x0 such that f(U) ⊂ V.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
58
Q

What does it mean for a function f to be continuous at a point x0?

A

f is continuous at x0 if lim f(x) = f(x0) as x approaches x0.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
59
Q

What is the equivalent condition for continuity of f at x0?

A

∀ϵ > 0, ∃η > 0 such that ∀x ∈ E, dE(x, x0) < η ⇒ dF(f(x), f(x0)) < ϵ.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
60
Q

What is the unique limit of f at x0 if it approaches two different limits l and l’?

A

l is unique; if f(x) approaches both l and l’, then l = l’.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
61
Q

What is the notation for the limit of f(x) as x approaches x0?

A

lim f(x) as x approaches x0.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
62
Q

What is the definition of the restriction of a function f to a subset A?

A

fA = f|A, where A ⊂ Df.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
63
Q

How is the limit expressed when A excludes a point x0?

A

lim f(x) as x approaches x0 with x ≠ x0.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
64
Q

True or False: If lim f(x) = l, then lim f(x) = l.

A

True.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
65
Q

What is the condition for a function to be continuous on the entire domain E?

A

f is continuous on E if it is continuous at every point x0 ∈ E.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
66
Q

What is the definition of the extension of a function by continuity?

A

If lim f(x) = l ∈ F as x approaches x0, then g(x) = f(x) if x ≠ x0 and g(x0) = l.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
67
Q

What is the condition for the composition of functions g and f to be continuous?

A

If lim f(x) = l1 and lim g(y) = l2, then lim (g ◦ f)(x) = l2 as x approaches x0.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
68
Q

What type of function is continuous if it is a polynomial of n real variables?

A

Every polynomial function of n real variables is continuous on Rn.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
69
Q

What does it mean for two distances d and δ on a set E to be topologically equivalent?

A

The identity map idE : (E, d) → (E, δ) is a homeomorphism.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
70
Q

What is the condition for f to be a homeomorphism from E to F?

A

f is a bijection and both f and its inverse f−1 are continuous.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
71
Q

What is the condition for the inverse image of an open set under a function to be open?

A

f is continuous if for every open set Ω in F, f−1(Ω) is an open set in E.

72
Q

What is the significance of the projection functions pi in a product space?

A

The projection functions pi: E → Ei are continuous for each i.

73
Q

What is the relationship between the continuity of a function f and its component functions fi?

A

f is continuous if and only if each component function fi is continuous.

74
Q

What is the consequence if g is continuous at a and g(a) ≠ 0?

A

1/g is continuous at a.

75
Q

Fill in the blank: A function is continuous if for every _______ in F, the pre-image under f is open in E.

76
Q

Fill in the blank: A function is continuous on E if for every _______ in F, the pre-image under f is closed in E.

A

closed set

77
Q

Qu’est-ce qu’une application continue en un point ?

A

Une application f est continue en ai si chacune de ses composantes ψi est continue.

Cela implique que pour toute suite convergente, l’image de cette suite converge vers l’image du point limite.

78
Q

Vrai ou Faux : La réciproque de la continuité d’une application est toujours vraie.

A

Faux

Exemple : L’application f définie par f(x,y) = x² + y² si (x,y) ≠ (0,0) et f(0,0) = 0 est continue en (0,0), mais ses applications partielles ne le sont pas.

79
Q

Définir une application uniformément continue.

A

Une application f est uniformément continue sur E si pour tout ϵ > 0, il existe η > 0 tel que pour tous (x, y) ∈ E, dE(x, y) < η implique dF(f(x), f(y)) < ϵ.

Cela signifie que la continuité ne dépend pas du point choisi dans E.

80
Q

Proposition : Quelles implications a une application uniformément continue ?

A

Toute application uniformément continue est continue.

Cependant, la réciproque est fausse.

81
Q

Qu’est-ce qu’une application lipschitzienne ?

A

Une application f est lipschitzienne s’il existe une constante k > 0 telle que pour tous x, y ∈ E, dF(f(x), f(y)) ≤ k * dE(x, y).

On dit alors que f est k-lipschitzienne.

82
Q

Vrai ou Faux : Toute application lipschitzienne est uniformément continue.

A

Vrai

Cela découle directement de la définition d’une application lipschitzienne.

83
Q

Définir la convergence d’une suite dans un espace métrique.

A

Une suite (xn)n∈N converge vers un point x ∈ E si pour tout voisinage V de x, il existe N ∈ N tel que n ≥ N implique xn ∈ V.

Cela est équivalent à dire que d(x, xn) < ϵ pour tout ϵ > 0.

84
Q

Proposition : Si une suite converge dans un espace métrique, que peut-on dire de sa limite ?

A

La limite de la suite est unique.

Cela est dû à la séparation de l’espace métrique.

85
Q

Qu’est-ce qu’une isométrie ?

A

Une application f est une isométrie si pour tous x, y ∈ E, dF(f(x), f(y)) = dE(x, y).

Toute isométrie est également lipschitzienne.

86
Q

Vrai ou Faux : Une valeur d’adhérence d’une suite est unique.

A

Faux

Une suite peut avoir plusieurs valeurs d’adhérence.

87
Q

Définir une valeur d’adhérence d’une suite.

A

Un point a ∈ E est une valeur d’adhérence de la suite (xn)n∈N si pour tout voisinage V de a, l’ensemble {n ∈ N / xn ∈ V} est infini.

Cela implique qu’il existe une infinité de termes de la suite qui se rapprochent de a.

88
Q

Qu’est-ce qu’une suite de Cauchy ?

A

Une suite est de Cauchy si pour tout ϵ > 0, il existe N ∈ N tel que pour tous m, n ≥ N, d(xm, xn) < ϵ.

Cela signifie que les éléments de la suite se rapprochent les uns des autres à mesure que l’on progresse dans la suite.

89
Q

What is the definition of a Cauchy sequence in a metric space (E, d)?

A

A sequence (xn)n∈N of points in E is a Cauchy sequence if ∀ϵ > 0, ∃N ∈ N such that p, q > N ⇒ d(xp, xq) < ϵ.

90
Q

True or False: Every convergent sequence in a metric space is also a Cauchy sequence.

91
Q

What property does every Cauchy sequence possess?

A

Every Cauchy sequence is bounded.

92
Q

If a Cauchy sequence (xn)n∈N has an adherence point x, what can be concluded?

A

It converges to the adherence point x.

93
Q

What is a complete metric space?

A

A metric space (E, d) is complete if every Cauchy sequence in (E, d) converges in (E, d).

94
Q

According to the Bolzano-Weierstrass theorem, what can be extracted from any bounded sequence of real numbers?

A

A convergent subsequence.

95
Q

Is the space R with the usual distance complete?

96
Q

What is the result when taking the product of k complete metric spaces?

A

The product space E = E1 × · · · × Ek is also complete.

97
Q

What defines a contraction mapping in a metric space (E, d)?

A

A mapping f: E → E is a contraction if there exists a real number 0 < k < 1 such that ∀x, y ∈ E, d(f(x), f(y)) ≤ kd(x, y).

98
Q

What can be concluded about the existence and uniqueness of fixed points for contractions in complete metric spaces?

A

Every contraction has a unique fixed point.

99
Q

What is a covering of a subset A in a metric space (E, d)?

A

A family (Ai)i∈I of subsets of E such that A ⊆ ∪i∈I Ai.

100
Q

What is a compact space in terms of open coverings?

A

A metric space (E, d) is compact if from every open covering of E, a finite subcovering can be extracted.

101
Q

True or False: Every finite subset of a metric space is compact.

102
Q

What is a property of every compact subset of a metric space?

A

Every compact subset is bounded.

103
Q

What is the relationship between compact sets and closed sets in metric spaces?

A

Every compact subset of a metric space is closed.

104
Q

Qu’est-ce qu’une partie compacte d’un espace métrique?

A

Une partie compacte d’un espace métrique (E, d) est celle qui est fermée et bornée.

105
Q

Proposition : Toute partie compacte d’un espace métrique est ______.

106
Q

Quelle est la caractéristique d’une partie ouverte dans le contexte de la compacité?

A

Si K est compact, alors son complémentaire ∁K est ouvert.

107
Q

Si E est compact, alors toute partie fermée F de E est ______.

108
Q

Théorème de Borel-Lebesgue : Tout intervalle fermé borné [a, b] de R est ______.

109
Q

Quelles sont les caractéristiques d’une partie K de R pour être considérée comme compacte?

A

K est fermée et bornée.

110
Q

Quel est le résultat pour les espaces métriques compacts E1, E2, … Ek?

A

L’espace métrique produit E = E1 × … × Ek est compact.

111
Q

Vrai ou Faux : Dans un espace métrique compact, si une suite de fermés non vides est décroissante, alors leur intersection est non vide.

112
Q

Théorème sur les suites : Dans un espace métrique compact (E, d), toute suite (xn)n∈N de points de E admet au moins une ______.

A

valeur d’adhérence dans E.

113
Q

Corollaire 1 : Dans un espace m´etrique compact, de toute suite (xn)n∈N de points, on peut extraire une ______.

A

sous-suite convergente dans E.

114
Q

Qu’est-ce que le théorème de Bolzano-Weierstrass?

A

De toute suite bornée de nombres réels, on peut extraire une sous-suite convergente.

115
Q

Qu’est-ce qu’un espace métrique complet?

A

Un espace métrique où toute suite de Cauchy converge.

116
Q

Lemme 1 : Si K est une partie de E et toute suite de points de K admet au moins une valeur d’adhérence dans K, alors pour tout ϵ > 0, il existe un ______.

A

recouvrement de K par un nombre fini de boules ouvertes de rayon ϵ.

117
Q

Lemme 2 : Si K est une partie de E et toute suite de points de K admet au moins une valeur d’adhérence dans K, alors il existe ϵ > 0 tel que pour tout x ∈ K, il existe ______.

A

i ∈ I tel que B(x, ϵ) ⊂ Oi.

118
Q

Théorème : K est compacte si et seulement si toute suite de points de K admet au moins une ______.

A

valeur d’adhérence dans K.

119
Q

En résumé, quelles sont les deux conditions pour qu’une partie K d’un espace métrique soit compacte?

A
  • K est fermée
  • K est bornée
120
Q

Vrai ou Faux : Un intervalle ouvert de R est toujours compact.

121
Q

Quel est le lien entre la compacité et la continuité dans un espace métrique?

A

Un espace métrique compact garantit que toute fonction continue atteint ses extrema.

122
Q

What is the definition of a compact set in metric spaces?

A

A set K is compact if every open cover of K has a finite subcover.

123
Q

What does it mean for a function f: (E, dE) → (F, dF) to be bounded?

A

f is bounded if f(E) is a bounded subset of F.

124
Q

If f is continuous on a compact set A in E, what can be concluded about f(A)?

A

f(A) is compact in F.

125
Q

True or False: If E is compact, then f(E) is compact.

126
Q

What is the Heine theorem regarding continuity and compactness?

A

If f is continuous on a compact subset K of E, then f is uniformly continuous on K.

127
Q

What is the definition of a connected metric space?

A

A metric space (E, d) is connected if there is no partition of E into two non-empty open sets.

128
Q

What are the equivalent assertions that define a connected space?

A
  • E is connected
  • The only open and closed subsets of E are E and ∅
  • There is no partition of E into two non-empty closed sets.
129
Q

What is a connected subset of a metric space?

A

A subset A of a metric space (E, d) is connected if the subspace (A, dA) is a connected metric space.

130
Q

What is the relationship between connectedness and continuous functions?

A

If E is connected and f: E → F is continuous, then f(E) is connected.

131
Q

What is a path in a metric space?

A

A path joining a and b is a continuous function f: [α, β] → E where f(α) = a and f(β) = b.

132
Q

What does it mean for a space to be connected by arcs?

A

A metric space (E, d) is connected by arcs if for all a, b ∈ E, there exists a path joining a and b.

133
Q

What is the conclusion about intervals in R regarding connectedness?

A

A subset A of R is connected if and only if A is an interval.

134
Q

Fill in the blank: A function f is said to be ______ if it attains its bounds on a compact set K.

135
Q

True or False: The image of a compact set under a continuous function is always compact.

136
Q

If A is a connected set in a metric space and B contains A, what can be concluded about B?

A

B is connected.

137
Q

What is the result of the product of two connected metric spaces?

A

The product of a finite family of connected metric spaces is connected if each space is connected.

138
Q

What is a path joining two points a and b in Rn?

A

f : [0, 1] → Rn, t → (1 − t) a + tb

This function defines a continuous path between points a and b in Rn.

139
Q

What does it mean for a metric space (E, d) to be arc-connected?

A

It means every pair of points in E can be joined by a continuous path in E.

140
Q

True or False: Every arc-connected metric space is connected.

141
Q

Give an example of an arc-connected space.

A

Rn is arc-connected.

142
Q

What is the definition of a normed vector space?

A

A vector space E equipped with a norm, denoted as (E, .).

143
Q

What does it mean for an application to be uniformly continuous?

A

An application is uniformly continuous if it satisfies the Lipschitz condition: |f(x) - f(y)| ≤ k |x - y| for some k > 0.

144
Q

What are the two types of operations defined for a normed vector space (E, .)?

A

Addition s : (x, y) ∈ E × E → x + y ∈ E and scalar multiplication p : (λ, x) ∈ K × E → λx ∈ E.

145
Q

What does it mean for an application to be continuous in a normed vector space?

A

It means small changes in input result in small changes in output.

146
Q

Fill in the blank: The norm of uniform convergence is defined as _______.

A

sup_{x ∈ X} |f(x)|.

147
Q

What theorem states that if (E, .) is complete, then (Fb(X, E), . ∞) is complete?

A

Theorem on the completeness of bounded functions.

148
Q

What is a linear continuous application?

A

An application f from E to F that is both linear and continuous.

149
Q

What notation is used for the set of continuous linear applications from E to F?

150
Q

What are the equivalent conditions for a linear application f from E to F to be continuous?

A
  • f is continuous on E
  • f is continuous at 0E
  • There exists a constant k > 0 such that ∀x ∈ E, ||f(x)||F ≤ k ||x||E.
151
Q

What does it mean for all norms on a finite-dimensional vector space E to be equivalent?

A

All norms induce the same topology on E.

152
Q

What is the definition of a multivariable continuous application?

A

An application f : E1 × E2 × … × En → F that is linear in each variable and continuous.

153
Q

What is the significance of the closed ball Bf(0E, 1) in a finite-dimensional space?

A

It is compact.

154
Q

True or False: Every linear application of Rn into Rp is continuous.

155
Q

What is the condition for a bilinear application f : E1 × E2 → F to be continuous?

A

It is continuous if it is continuous at (0E1, 0E2) and there exists a constant k > 0 such that ∀(x1, x2) ∈ E1 × E2, ||f(x1, x2)||F ≤ k ||x1||E1 × ||x2||E2.

156
Q

What is the definition of a norm on L(E, F)?

A

For f ∈ L(E, F), ||f|| = sup_{x ∈ E, x ≠ 0} ||f(x)||F / ||x||E.

157
Q

What does the corollary about composition of linear applications state?

A

If g ∈ L(F, G) and f ∈ L(E, F), then g ◦ f ∈ L(E, G) and ||g ◦ f|| ≤ ||g|| ||f||.

158
Q

Comment est défini un espace de Banach ?

A

Un espace vectoriel normé sur K = R ou C qui est complet

Un espace de Banach réel est un espace de Banach sur R, et un espace de Banach complexe est sur C.

159
Q

Quelle est la proposition concernant les espaces vectoriels de dimension finie ?

A

Tout espace vectoriel de dimension finie sur K = R ou C est un espace de Banach.

160
Q

Quelle est la norme de la convergence uniforme dans le contexte des espaces de Banach ?

A

La norme de la convergence uniforme est notée ∞.

161
Q

Qu’est-ce qu’un isomorphisme d’espaces vectoriels normés ?

A

Une application f : (E, E) → (F, F) qui est linéaire, bijective, continue, et dont la réciproque f⁻¹ est continue.

162
Q

Quand une application linéaire continue et bijective entre deux espaces de Banach est-elle un isomorphisme ?

A

Elle est un isomorphisme d’espaces vectoriels normés.

163
Q

Qu’est-ce que l’inégalité de Cauchy-Schwarz ?

A

< x, y > | ≤ √< x, x >√< y, y >.

164
Q

Comment définit-on un espace préhilbertien réel ?

A

Un espace vectoriel sur R muni d’un produit scalaire.

165
Q

Qu’est-ce qu’un espace de Hilbert réel ?

A

Un espace préhilbertien réel qui est complet pour la norme associée au produit scalaire.

166
Q

Qu’est-ce que la norme associée au produit scalaire dans un espace préhilbertien ?

A

Pour tout x ∈ H, la norme est définie par x = √< x, x >.

167
Q

Quelle est la définition d’un espace de Banach complexe ?

A

Un espace de Banach sur C.

168
Q

Qu’est-ce que la série exponentielle dans le contexte des espaces de Banach ?

A

La série Σ (1/n!) fⁿ converge normalement, où f⁰ = IdE et fⁿ = f ∘ … ∘ f (n fois).

169
Q

Quelle condition doit remplir IdE − u pour être inversible dans L(E, E) ?

A

Il faut que u < 1.

170
Q

Qu’est-ce qu’un espace vectoriel normé ?

A

Un espace vectoriel muni d’une norme.

171
Q

Pour tous x, y ∈ H, quelle est l’inégalité qui doit être satisfaite par la norme associée ?

A

x + y ≤ x + y.

172
Q

Vrai ou Faux : Un espace de Hilbert réel est un espace de Banach réel.

173
Q

Qu’est-ce que la continuité d’une application f en un point a ?

A

lim (x→a) f(x) = f(a).

174
Q

Complétez l’espace vectoriel normé : Un espace vectoriel normé est complet si _______.

A

[il contient toutes les suites de Cauchy].

175
Q

Qu’est-ce que l’application : u ∈ Isom(E, F) → u⁻¹ ∈ Isom(F, E) ?

A

Elle est continue.