Thermodynamics (Topics 1-5) Flashcards
K (equilibrium constant) =
Concentration of products at equilibrium/concentration of reactants at equilibrium
Molar change in Gibbs free energy (Jmol^-1) =
-RTln(K) = Molar Gibbs energy of reactants-products (Jmol^-1)
Fundamental units for heat
kg m^2 s^-2 (J)
Boltzmann constant
1.381 x 10^-23 J K^-1
Gas constant
8.314 J K^-1 mol^-1
Avogadro Constant
6.022 x 10^23 mol^-1
Atomic mass unit
1.661 x 10^-27 kg
Pascal SI units
kg m^-1 s^-2
(N m^-2)
Newton SI units
kg m s^-2
Kinetic energy (J)
1/2 mass (kg) x velocity^2 (m s^-1)^2
Potential energy (J) =
Mass (kg) x gravity (9.81 m s^-2 on earth) x heights (m)
g on earth
9.81 m s^-2
Joule in SI units
kg m^2 s^-2
Work (J) =
Force (N) x distance (m)
-p delta V
Ideal gas law
p(Pa) x V(m^3) = n(mol) x R(8.314 J K^-1 mol^-1) x T(K)
Equation linking gas constant and Boltzmann constant
R = NA x kB
Real Gas Law
(p+an^2 / V^2 )(V-nb) = nRT
Force acting on the piston (N or kg m s^-2) =
External pressure (Pa or kg m^-1 s^-2) x Area (m^2)
Area = pi r^2
dw = (2 equations)
Integrated form also
-p(ext) pi r^2 (dx) = -p(ext) dV
w = equations above integrated with limits Vf and Vi
Internal energy (J) =
Kinetic energy (J) + potential energy (J)
Intensive properties are
Name 3
Independent of the size of the system
Temperature
Density
Concentration
Extensive properties are
Name 3
A sum of that property for each component subsystem
Entropy
Mass
Volume
Internal energy for monatomic gas = (2 equations)
3 kB T / 2 per molecule
3 R T / 2 per mole
Enthalpy change is equal to
Heat change
H (J) =
U (J) + pV (J)
Change in internal energy (J) =
Heat transferred (J) + work done (J)
=0 in an isothermal process
q(rev) (J) + w(rev) (J) = 0
Change in entropy (J K^-1)
4 equations
delta S surr = q sys (J) / T (K) = c p,m lnT2 / T1
c integral between Tf and Ti 1/T dT = Cv or Cp ln(Tf/Ti)
-nR {XA ln XA + XB ln XB} where XA / XB = molar fraction of A/B
nR ln (Vf/Vi)
Gibbs Free Energy Change (J)
3 equations
Delta G = delta H - T delta S
Delta G = nRT {XA ln XA + XB ln XB} where XA / XB = molar fraction of A/B
Delta G = -nRTlnK
Clausius inequality
0 > change in enthalpy - Temperature x change in entropy of system
Change in entropy of system > q / T
For a spontaneous reaction, Gibbs Free Energy Change is
Less than 0