THEOREMS Flashcards
v(^)j
- omitting vj from list
- ## if list was linearly indep then so is ommited list
- THEOREM 2.1.9
- COR. 2.1.10
- if β=u1,…,un basis for V and γ=v1,…,vr is linearly independent, then r<=n
if r=n then γ basis for V - if v1,…,vn and w1,…,wr are bases of V then r=n
- COR. 2.2.8
- THEOREM 2.2.9
- Let V n-dim and β=v1,…,vn∈V
- if β spans V, then it is a basis
- if β linearly independent then it is basis
- U subspace of n-dim V. then U finite dim. with dimU<=n
dimU=n ⟺U=V
COR. 2.5.3
V,W finite dim. with dimV=dimW and T∈L(V,W)
then KerT={0} ⟺ ranT=W
THEOREM 5.2.5
V finite dim. inner product space
β=u1,…,un orthonormal basis
v∈V
then v= Σ<v,ui>ui
||v||^2 = Σ|<v,ui>|^2
and basis representation of v w.r.t. β is [v]_β = [<v,u1> … <v,un>]^T
COR. 5.3.12
COR 5.3.13
- every finite dim. inner product space has an orthonormal basis
- every orthonormal system in a finite dim. inner product space can be extended to an orthonormal basis
THEOREM 7.1.8
if U finite dim. subsoace of innerproduct space, then (U^(⊥))^(⊥)=U
THEOREM 7.3.9
Let X, Y∈Mn×r have orthonormal columns
Then col X = col Y ⟺ ∃U ∈ Mr unitary: X = YU.
THEOREM 7.3.10
Let U be a finite-dimensional subspace of V
- P_{0} = 0 and P_V = I
- ran P_U = U
- ker P_U = U^(⊥)
- v − P_U(v) ∈ U^(⊥), ∀v ∈ V
- ||P_U (v)|| ≤ ||v||, ∀v ∈ V
(equality ⟺ v ∈ U)
THEOREM 7.3.11
let V be finite dim., U subspace of V
1. (P_(u)^(⊥)) = I - (P_u)
2. (P_u)(P_(u)^(⊥))=(P_(u)^(⊥))(P_u)=0
3. (P_(u))^(2) = (P_u)
4. (P_u) = (P_(u))^*
THEOREM 7.3.14
let V be finite dim., and P∈L(V)
then
P orthogonal projection onto ranP
⟺
P self adjoint and idempotent
THEOREM 13.1.2
A∈Mn(F) positive semi-definite
⟺
A hermitian and all eigenvalues non-negative
⟺
∃B∈Mn(F) : A=BB
⟺
for some m>0, ∃B∈Mmxn(F): A=BB
THEOREM 13.1.8
A∈Mn(F) positive definite
⟺
A hermitian and all eigenvalues positive
⟺
A is positive semi-definite and invertible
⟺
A is invertible and A^(-1) is positive definite
⟺
∃B∈Mn(F) invertible : A=BB
⟺
for some m>=n, ∃B∈Mmxn(F): rankB=n and A=BB
THEOREM 13.1.9
- let A∈Mn(F) positive semi-definite
then
1. trA>=0 with strict equality ⟺ A≠0
2. detA>=0 with strict equality ⟺ A positive definite
THEOREM 13.1.10
suppose B∈Mmxn(F) and let A=BB
then
1. nullA=nullB
2. rankA=rankB
3. A=0 ⟺ B=0
4. colA = colB
5. if B normal then colA=colB