The Normal Distribution Flashcards
E(X1 + X2) =
E(X1) + E(X2)
E(X1 - X2) =
E(X1) - E(X2)
Var(X1 + X2) =
Var(X1) + Var(X2)
Var(X1 - X2) =
Var(X1) + Var(X2)
what does “o/” signify
probability density function (pdf)
what does u and o^2 signify
- u = mean
- o^2 = variance where o = standard deviation
if X~N(u , o^2), o/(x) =
(1 / o * root of 2pi) * e^(-1/2(x - u / o)^2)
what is the equation for z in the standardised form
z = x - u / o
what is the standardized normal distribution
Z~N(0,1)
what is the pdf for the standardised normal distribution
(1 / root of 2pi) * e^(-z^2 / 2)
what does the symbol “oT” singnify
the cumilative distribution function (cdf)
what does P(Z < z) =
oT(z)
what does oT(z) =
(1 / root of 2pi) * integration of e^(-1/2 *u^2) with limits z and -infinity
If X1~N(u1 , a^2) and X2~N(u2, b^2), (X1 + X2)~ what
N(u1 + u2 , a^2 + b^2) only true for independent random variables
If X~N(u, o^2), what does aX + b equal
aX + b~N(au +b, a^2 * o^2)