The basics Flashcards
to connect variouse ideas from ch.13 to ch.12, should include practice problems.
V!+W!
W!+V!
a(bW!)
(ab)W!
(V!+W!)+U!
V!+(W!+U!)
(a+b)V!
aV!+bV!
1V!
V!
0V!
0!
V!+0!
V!
W!+(-1)U!
W!-U!
V! * W!
W! * V!
(aV!)W!=V!(aW!)
a(V!*W!)
(V!+W!)U!=V!U! + W!*U!
IIV!II^2=V!*V!
If V! and W! are parallel
V! x W! = 0
U! x (V! + W!)=
U! x V! + U! x W!
V! x W!
-W! x V!
(aV!) x (W!) = V! x (aW!)
a(V! x W!)
area of a parallelogram
IIV! x W!II
area of a triangle
1/2 IIV! * W!II
arithmetic equation dot product
V!xW!x+V!yW!y+V!zW!z
geometric equation dot product
IIV!II IIW!II cos(theta)
normal vector
is perpendicular to plane
normal vector plane equation
PoP! * n! = a(x-xo)+b(y-yo)+c(z-z0)
unit vector
V!/IIV!II
unit vector over a certain distance
dV!/IIV!II
geometric equation for cross product magnitude
IIV! x W!II = IIW!II IIV!II sin(theta)
geometric equation for cross product
V! x W! = IIV!II IIW!II sin(theta) n!
matrix for agebraic cross product
V! x W! = (V2W3 - V3W2)i! - (V1W3-V3W1)j! + (V1W2-V2W1)K!