Terms Flashcards
The intersection of a plane and a double right cone. Different types of this are produced by changing the angle and location of the intersection.
Conic sections
4 types of conic sections that will never pass through the vertices of the cone
Circle, Ellipse, Hyperbola, Parabola
If the right circular cone is cut by a plane parallel to its base, the intersection that will be formed is what?
Circle
To generate this, the intersecting plane must be parallel to one side of the cone and it should intersect one of the cones
Parabola
If the plane intersects one of the pieces of a cone and not parallel to the base, the intersection will be a what?
Ellipse
To generate this, the plane intersect in both pieces of the cone and the plane must be perpendicular to the base of the cones
Hyperbola
A locus of points equidistant from a fixed point called the center.
Circle
Is a locus of points equidistant from a fixed point called the focus and fixed line called directrix
Parabola
6 Properties of a Parabola
Orientation, Vertex, Focus, Directrix, Axis of Symmetry, Endpoints of the Latus Rectum
The turning point of parabola
Vertex
Fixed point in the parabola
Focus
Fixed line in the parabola. Must have no intersection point with the parabola itself
Directrix
Line that divides a parabola into two equal parts
Axis of Symmetry
Chord that is perpendicular to the axis of symmetry and passing through the focus
Latus Rectum
4 Orientation of a parabola
Upward, Downward, To the right, To the left