Tema 1 Flashcards

1
Q

Condiciones exigibles a una función para que sea una función de distribución bidimensional

A

.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Independencia

A

.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

La σ-álgebra producto

A

6

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Espacio de probabilidad inducido por un vector aleatorio

A

7

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Función de distribución del vector X n-dimensional

A

7

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

medidas de probabilidad marginales

A

9

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Función de distribución marginal

A

9

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Un vector aleatorio es discreto si y sólo si todas sus componentes son discretas

A

10

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Vector aleatorio discreto

A

10

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Función de probabilidad discreta bidimensional

A

11

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Vector aleatorio continuo

A

12

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Vector aleatorio absolutamente continuo

A

12

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Si el vector aleatorio (X, Y )es absolutamente continuo con funci´on de densidad f(x, y), entonces las variables aleatorias X e Y son absolutamente continuas y la relaci´on existente entre las funciones de densidad marginales y la conjunta es:…

A

13

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Vector aleatorio con distribución uniforme

A

13

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Vector aleatorio singular

A

14

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Vector aleatorio mixto

A

14

17
Q

Distribución condicionada caso discreto

A

15

18
Q

Distribución condicionada caso absolutamente continuo

A

16

19
Q

Si X1, . . . , Xn son variables aleatorias independientes y gi
: R → R, i = 1, . . . , n,
son funciones medibles Borel, entonces g1(X1), . . . , gn(Xn) son variables aleatorias independientes

A

17

20
Q

X1, . . . , Xn
son independientes si y s´olo si,
F(x1, x2, . . . , xn) = F1(x1)F2(x2)· · · Fn(xn)

A

17

21
Q
X1, . . . , Xn son
independientes si y s´olo si, ∀x = (x1, . . . , xn)
0
tal que xi ∈ Sop(Xi), i = 1, . . . , n,
P (X = x) = Yn
i=1
P(Xi = xi)
A

17

22
Q

es X1, . . . , Xn son
independientes si y s´olo si,
f(x1, x2, . . . , xn) = f1(x1)f2(x2)· · · fn(xn)

A

17