Taylor Series Flashcards
Taylor vs Maclaurin
Taylor approximates the value of a function around x = a, Maclaurin only around x = 0
f(x+a) Taylor formula
f(a) + f’(a) x + (f’‘(a)/2!)x^2 + (f’’‘(a)/3!)x^3 + …
Maclaurin but replace any f(0) with f(a)
f(x) Taylor formula
f(a) + f’(a) (x-a) + (f’‘(a)/2!)(x-a)^2 + (f’’‘(a)/3!)(x-a)^3 + …
lim x->c (f(x) + g(x))
lim x->c f(x) + lim x->c g(x)
lim x->c (f(x) / g(x))
lim x->c g(x)
lim x->c (f(x) * g(x))
lim x->c f(x) * lim x->c g(x)
lim x->c af(x)
a(lim x->c f(x))
Indeterminate forms tactic
- Replace with a Taylor expansion where possible
- When you have f(x)g(x) giving 0*∞, use f(x)/(1/g(x))
Differential equations Taylor
Find values of y, dy/dx, d^2y/dx^2 etc for x = x0 by differentiating and substitute into the f(x) Taylor formula using (x-x0)^n