Surds Flashcards
√3 x √7
√3 x √7 = √21
√24 ÷ √6
√24 ÷ √6 = √4 = 2
2√3 x 3√5
2√3 x 3√5 = 6√15
10√8 ÷ 2√2
10√8 ÷ 2√2 = 5√4 = 5x2= 10
(√9)^2
(√9)^2 = √9 x √9 = √81= 9
Express √75 in its simplest form
√75 simplified: √25 x √3 = 5√3
Express √32 in its simplest form
√32 simplified: √16 x √2 = 4√2
Write √18 in the form k√2, where k is an integer
√9 x √2 = 3√2
Write 3√20 in the form k√5, where k is an integer
20 = √4 x √5 = 2√5 x 3= 6√5
Simplify √40 + √90
√40 = √4 x √10 = 2√10
√90 = √9 x √10 = 3√10
2√10 + 3√10 = 5√10
You can add because there’s the same number inside the root.
Simplify: √45 + √125 - √20
√9 x √5 + √25 x 5 - √4 x √5
3√5 + 5√5 - 2√5
= 6√5
Simplify √3 + √12
√3 (can’t be simplified anymore)
√12 = √4 x √3 = 2√3
1√3 + 2√3 = 3√3
Simplify √15 x √3
√45 = √9 x √5 = 3√5
Simplify 3√6 x 2√3
6√18
√18 = √6 x √3
6 x √18 = 6√18
Expand and simplify: √3(√3-2√5)
√9 - 2√15 = 3-2√15
Simplify: 5√2 x 3√2
15√4 = 15 x 2 = 30
√3 + √3
1√3 + 1√3 = 2√3
(12 +8√5) ÷ 4
3 + 2√5
(5 + 2√2)(3-√8)
15-5√8+6√2–2√16
-2√16 = -2 x 4 = 8
15 - 5√8+6√2–8
5√8 = √4 + √2 = (x5) 10√2
15 - 10√2 + 6√2 - 8
7 - 4√2
Expand and simplify: (7 + 2√3)(2 - 3√6)
Fully simplified:
14 - 21√6 + 4√3 - 18√2
Expand and simplify: (√12 - √3)^2
12 - 6 - 6 + 3= 3
Find (5 - √8)(7 + √2) leaving your answer in the form a + b √2
35 + 5√2 - 7√8 - √16
Simplify √16 = 4, 7√8 = √4 x √2 = 7 x 2√2 = 14√2
(Don’t forget the minus in front of the 14√2)
31 + 5√2 - 14√2 =
31+ - 9√2 =
31 - 9√2