Surds Flashcards
Simplifying surds
√ab = √a x √b
find two numbers that x together to get the surd making sure one is a square number.
simplify √18
√9 x √2 = 3√2
simplify √200
√100 x √2 = 10√2
simplify √48
√4 x √12 = 2√12 = 2 x √4 √3
= 2x 2 x√3
= 4 √3
however if you spot the larger square root that goes into the surd it will make the process quicker e.g √48 - √16 x √3 = 4√3
simplify √12/√300
Simplify each half first.
= √4 x √3 / √100 x √3
= 2√3 / 10√3 (√3 is a common factor in numerator and denominator so they can cancel)
= 2/10 = 1/5
√24 x √150
Deal with them individually first.
= √4 x √6 x √25 x √6
= 2√6 x 5√6 = 10 x 6 = 60
√20 + √180
√4 x √5 + √36 x √5
= 2√5 + 6 √5 = 8 √5
√63 - √28
√9 x √7 - √4 x √7 = 3√7 - 2√7 = √7
√108 + √72
√36 x √3 + √36 x √2
= 6√3 + 6√2 (as the number under the square roots are different we cannot simplify any further)
however we could do -
6(√3 + √2) as there is two 6
Expand: √3(√2 + 5)
√3(√2 + 5) = √6 + 5 √3
Expand: 6(√3 + √6)
= 6√3 + 6 √6
Expand: √5(8-√7)
8√5 - √35
Expand: √6(√15 - 2√2)
= √90 - 2√12
= √9 x √10 - 2 x √4 x √3
= 3√10 - 4√3
√12(√50 + 3√10)
first we can simplify the surds
2√3(5√2 + 3 √10) = 10√6 + 6√30
Expand: (2 + √2)(3 - √5)
When expanding any double brackets we can use a grid.
|3 |-√5|
2| | |
√2| | |
Then we multiply the one on the side by the ones on the top.
|3 |-√5 |
2| 6 | -2 √5 |
√2| 3√2 | -√10 |
= 6 - 2√5 + 3√2 - √10