Summer Studying Flashcards
Trignometric Identity
sec(x)
1/cos(x)
Trignometric Identity
csc(x)
1/sin(x)
Trignometric Identity
cot(x)
Inverse Terms
1/tan(x)
Trignometric Identity
tan(x)
Trig Identity
sin(x)/cos(x)
Trignometric Identity
cot(x)
Sin and cos terms
cos(x)/sin(x)
Trignometric Identity
cos²(x) + sin²(x)
1
Trignometric Identity
1+tan²x
sec²x
Trignometric Identity
sec²x
1+tan²x
Trignometric Identity
1+cot²(x)
csc²(x)
Trignometric Identity
csc²(x)
1 + tan²(x)
Trignometric Identity
sin(2x)
2sin(x)cos(x)
Trignometric Identity
2sin(x)cos(x)
sin(2x)
Trignometric Identity
cos(2x)
cos²(x) - sin²(x)
Trignometric Identity
cos²(x) - sin²(x)
cos(2x)
Trignometric Identity
cos²(x)
cos 2x terms
½(1+ cos(2x))
Trignometric Identity
½(1+ cos(2x))
cos²(x)
Trignometric Identity
sin²x
cos 2x terms
½(1-cos(2x))
Trignometric Identity
½(1-cos(2x))
sin²(x)
Trignometric Identity
1/cos(x)
sec(x)
Trignometric Identity
1/sin(x)
csc(x)
Trignometric Identity
1/tan(x)
cot(x)
Trignometric Identity
sin(x)/cos(x)
tan(x)
Trignometric Identity
cot(x)
cos and sin terms
cos(x)/sin(x)
Graph Form
Slope-Intercept Form
y = mx + b
Graph Form
Point-Slope Form
y - y₁ = m(x - x₁)
Normal line is ______ to tangent line
Perpendicular
____ line is perpendicular to tangent line
Normal
Normal line is perpendicular to ____ line
Tangent
f(x) = f(-x)
Even function
Even function criteria
f(x) = f(-x)
f(-x) = -f(x)
Odd function
Odd function criteria
f(-x) = -f(x)
Exponents
a⁰ when a ≉ 0
1
Exponents
a¹
a
Exponents
a^m × a^n
a^m+n
Logarithms
log(base b) x = y
y^b = x
Exponents
a^m/a^n
a^m-n
Exponents
a^m/n
(nth root of a)^m
Exponents
(a^m)^n
a^mn
Exponents
a^m/n
nth root of (a^m)
Exponents
a^-m when a ≉ 0
1/a^m
Logarithms
b^y = x (turn to log)
log (base b) x = y
Area/Volume
Area of a Triangle
A = ½bh
Area/Volume
Area of an equilateral triangle
A = (√3 / 4) s²
Area/Volume
Area of a Circle
A = πr^2
Area/Volume
Circumference of a circle
C = 2πr or C = πd
Area/Volume
Volume of a sphere
V = (4/3)πr³
Area/Volume
Surface Area of a sphere
4πr²
Area/Volume
Volume of a cylinder
V = πr²h
Area/Volume
Volume of a cone
V = (π/3)r²h
Logarithms
log (base b) 1
0
Logarithms
log (base b) b
1
Logarithms
log (base b) mn
log (base b) m + log (base b) n
Logarithms
log (base b) m + log (base b) n
log (base b) mn
Logarithms
log (base b) m/n
log (base b) m - log (base b) n
Logarithms
log (base b) m - log (base b) n
log (base b) m/n
Logarithms
log (base b) m^n
n log (base b) m
Logarithms
n log (base b) m
log (base b) m^n
Logarithms
e^ln(x)
x
Logarithms
ln e^x
x
Logarithms
log (base b) x
log x / log b
Logarithms
log (base b) b^a
a
Logarithms
b^log (base b) a
a
Degrees and Radians
0 degrees in radians
0
Degrees and Radians
30 degrees in radians
π/6
Degrees and Radians
45 degrees in radians
π/4
Degrees and Radians
60 degrees in radians
π/3
Degrees and Radians
90 degrees in radians
π/2
Degrees and Radians
120 degrees in radians
2π/3
Degrees and Radians
135 degrees in radians
3π/4
Degrees and Radians
150 degrees in radians
5π/6
Degrees and Radians
180 degrees in radians
π
Degrees and Radians
210 degrees in radians
7π/6
Degrees and Radians
225 degrees in radians
5π/4
Degrees and Radians
240 degrees in radians
4π/3
Degrees and Radians
270 degrees in radians
3π/2
Degrees and Radians
300 degrees in radians
5π/3
Degrees and Radians
315 degrees in radians
7π/4
Degrees and Radians
330 degrees in radians
11π/6
Degrees and Radians
360 degrees in radians
2π