SUB-ELEMENT K Flashcards
What is the frequency range of the Distance Measuring Equipment (DME) used to indicate an aircraft’s slant range distance to a selected ground-based navigation station?
A. 108.00 MHz to 117.95 MHz.
B. 108.10 MHz to 111.95 MHz.
C. 962 MHz to 1213 MHz.
D. 329.15 MHz to 335.00 MHz.
C
The Distance Measuring Equipment (DME) measures the distance from the aircraft to the DME ground station. This is referred to as:
A. DME bearing.
B. The slant range.
C. Glide Slope angle of approach.
D. Localizer course width.
B
The Distance Measuring Equipment (DME) ground station has a built-in delay between reception of an interrogation and transmission of the reply to allow:
A. Someone to answer the call.
B. The VOR to make a mechanical hook-up.
C. Operation at close range.
D. Clear other traffic for a reply.
C
What is the main underlying operating principle of an aircraft’s Distance Measuring Equipment (DME)?
A. A measurable amount of time is required to send and receive a radio signal through the Earth’s atmosphere.
B. The difference between the peak values of two DC voltages may be used to determine an aircraft’s distance to another aircraft.
C. A measurable frequency compression of an AC signal may be used to determine an aircraft’s altitude above the earth.
D. A phase inversion between two AC voltages may be used to determine an aircraft’s distance to the exit ramp of an airport’s runway.
A
What radio navigation aid determines the distance from an aircraft to a selected VORTAC station by measuring the length of time the radio signal takes to travel to and from the station?
A. RADAR.
B. Loran C.
C. Distance Marking (DM).
D. Distance Measuring Equipment (DME).
D
The majority of airborne Distance Measuring Equipment systems automatically tune their transmitter and receiver frequencies to the paired __ / __ channel.
A. VOR/marker beacon.
B. VOR/LOC.
C. Marker beacon/glideslope.
D. LOC/glideslope.
B
All directions associated with a VOR station are related to:
A. Magnetic north.
B. North pole.
C. North star.
D. None of these.
A
The rate that the transmitted VOR variable signal rotates is equivalent to how many revolutions per second?
A. 60
B. 30
C. 2400
D. 1800
B
What is the frequency range of the ground-based Very-high-frequency Omnidirectional Range (VOR) stations used for aircraft navigation?
A. 108.00 kHz to 117.95 kHz.
B. 329.15 MHz to 335.00 MHz.
C. 329.15 kHz to 335.00 kHz.
D. 108.00 MHz to 117.95 MHz.
D
Lines drawn from the VOR station in a particular magnetic direction are:
A. Radials.
B. Quadrants.
C. Bearings.
D. Headings.
A
The amplitude modulated variable phase signal and the frequency modulated reference phase signal of a Very-high-frequency Omnidirectional Range (VOR) station used for aircraft navigation are synchronized so that both signals are in phase with each other at ____________ of the VOR station.
A. 180 degrees South, true bearing position.
B. 360 degrees North, magnetic bearing position.
C. 180 degrees South, magnetic bearing position.
D. 0 degrees North, true bearing position.
B
What is the main underlying operating principle of the Very-high-frequency Omnidirectional Range (VOR) aircraft navigational system?
A. A definite amount of time is required to send and receive a radio signal.
B. The difference between the peak values of two DC voltages may be used to determine an aircraft’s altitude above a selected VOR station.
C. A phase difference between two AC voltages may be used to determine an aircraft’s azimuth position in relation to a selected VOR station.
D. A phase difference between two AC voltages may be used to determine an aircraft’s distance from a selected VOR station.
C
What is the frequency range of the localizer beam system used by aircraft to find the centerline of a runway during an Instrument Landing System (ILS) approach to an airport?
A. 108.10 kHz to 111.95 kHz.
B. 329.15 MHz to 335.00 MHz.
C. 329.15 kHz to 335.00 kHz.
D. 108.10 MHz to 111.95 MHz.
D
What is the frequency range of the marker beacon system used to indicate an aircraft’s position during an Instrument Landing System (ILS) approach to an airport’s runway?
A. The outer, middle, and inner marker beacons’ UHF frequencies are unique for each ILS equipped airport to provide unambiguous frequency-protected reception areas in the 329.15 to 335.00 MHz range.
B. The outer marker beacon’s carrier frequency is 400 MHz, the middle marker beacon’s carrier frequency is 1300 MHz, and the inner marker beacon’s carrier frequency is 3000 MHz.
C. The outer, the middle, and the inner marker beacon’s carrier frequencies are all 75 MHz but the marker beacons are 95% tone-modulated at 400 Hz (outer), 1300 Hz (middle), and 3000 Hz (inner).
D. The outer, marker beacon’s carrier frequency is 3000 kHz, the middle marker beacon’s carrier frequency is 1300 kHz, and the inner marker beacon’s carrier frequency is 400 kHz.
C
Which of the following is a required component of an Instrument Landing System (ILS)?
A. Altimeter: shows aircraft height above sea-level.
B. Localizer: shows aircraft deviation horizontally from center of runway.
C. VHF Communications: provide communications to aircraft.
D. Distance Measuring Equipment: shows aircraft distance to VORTAC station.
B