Stats Flashcards
Soit :
A = [ 2, 4, 5, 7, 7, 8 ]
B = [ 0, 7, 8, 12, 32 ]
C = [ 2, 2, 4, 4, 9, 9]
La Mode est :
mode de A = 7
mode de B = aucun
mode de C = [ 2, 4, 9 ] (mulitmodale)
Soit :
A = [ 2, 4, 5, 7, 7, 8 ]
B = [ 0, 7, 8, 12, 32 ]
C = [ 2, 2, 4, 4, 9, 9]
La Médiane est :
médiane de A = 6
médiane de B = 8
médiane de C = 4
Calculer l’écart type d’une population:
√(ΣNi=1(xi-μ)2/N)
Calculer l’écart type d’un échantillon:
√(Σni=1(xi-μ)2/n-1)
Σ = somme
μ = moyenne (population ou échantillon)
N = taille de la population
n = taille de l’échantillon
Loi normale standard:
Z ~ N(μ,σ2)
Z = X - μ / σ
Ex.:
μ = 200
σ = 40
X = 250
∆ = écart par rapport à la moyenne
∆ = X - μ = 250 - 200 = 50
Z0 = ∆ / σ = 50 / 40
= 1,25
Dans le tableau 1,25 = 0,106
Donc prob = 10,6%
Calcul d’espérance de gain:
E = espérance
P() = probabilité
W = gain - perte
L = perte
E = (W × P(W)) + (L × P(L))
Exemple :
P(W) = 1/100
W = 20$ - 1$
L = -1$
E = (19 × 1/100) + (-1 × 99/100)
= -0,80$