Set Definitions Flashcards
1
Q
The 3 ways to write ∃!xP(x)
A
∃x (P(x) ∧ ∀y (P(y) → y = x) )
∃x ∀y (P(y) ↔ y = x)
∃x P(x) ∧ ∀y ∀z ( (P(y) ∧ P(z) ) → y = z)
2
Q
A⊆B
A
∀x (x ∈ A → x ∈ B)
3
Q
℘(A)
A
{x | x ⊆ A}
4
Q
A×B
A
{(a,b) | a ∈ A ∧ b ∈ B}
5
Q
Relation
A
R ⊆ A×B
6
Q
∩F
A
{x | ∀A (A ∈ F → x ∈ A)}
7
Q
∪F
A
{x | ∃A (A ∈ F ∧ x ∈ A)}
8
Q
Dom(R)
A
{a ∈ A | ∃b ∈ B ( (a,b) ∈ R)}
9
Q
Ran(R)
A
{b ∈ B | ∃a ∈ A ( (a,b) ∈ R)}
10
Q
R-1
A
{(b,a) ∈ B×A | (a,b) ∈ R}
11
Q
SoR
A
{(a,c) ∈ A×C | ∃b ∈ B ( (a,b) ∈ R ∧ (b,c) ∈ S)}
12
Q
Reflexive
A
∀x ∈ A (xRx)
13
Q
Symmetric
A
∀x ∈ A ∀y ∈ A (xRy → yRx)
14
Q
Transitive
A
∀x ∈ A ∀y ∈ A ∀z ∈ A ( (xRy ∧ yRx) → xRz)
15
Q
Antisymmetric
A
∀x ∈ A ∀y ∈ A ( (xRy ∧ yRx) → x = y)