Session 1 Flashcards
what takes you to the general help page
help.start()
lists the arguments of a function
args(<function>)</function>
takes you to the help page for <function></function>
?<function></function>
runs examples for <function></function>
example(<function>)</function>
lists functions that contan text “abc” in name
apropos(“abc”)
lists all functions that have something to do with abc
??abc
define a vector
c()
calculate the number of entries in a vector
length()
find the third entry in a vector
<vector>[3]
</vector>
use one line to find the first, fourth, and sixth entry in a vector
<vector>[c(1,4,6)]
</vector>
Define the following matrix, name its elements and find A^2
rows <- c(“row1”, “row2”)
columns <- c(“column1”, “column2”)
A <- matrix(c(1,2,3,4), nrow = 2, ncol = 2, byrow = TRUE, dimnames = list(rows,columns))
B <- A%*%A
install the markov chain package
load the markov chain package
install.packages(“markovchain”)
library(markovchain)
A no claims discount system has three levels of discount: low, medium, and high.
Define the transition matrix as follows: 0.6, 0.4, 0, 0.5, 0, 0.5, 0.1, 0.7, 0.2
Create a markov chain object describing the system. Print the object and note the detail provided.
discountlevels <- c(“low”, “medium”, “high”)
transitions <- matrix(c(etc), nrow = 3, ncol = 3, byrow = TRUE, dimname = list(discountlevels, discountlevels))
NCDsystem <- new(“markovchain”, states = discountlevels, byrow =TRUE, transitionMatrix = transitions)
NCDsystem
NCD system, 3 levels of discount.
Transition matrix: 0.6, 0.4, 0, 0.5, 0, 0.5, 0.1, 0.7, 0.2
a) Find the 3 step transition matrix using matrix multiplication and using the markovchain package
b) Assuming the distribution at t=0 is 0.6, 0.2, 0.2 find the distribution at t=3 using matrix multiplication and using the markovchain package
discountlevels <- c(“low”, “medium”, “high”)
transitions <- matrix(c(etc), nrow = 3, ncol = 3, byrow = TRUE, dimname = list(discountlevels, discountlevels))
NCDsystem <- new(“markovchain”, states = discountlevels, byrow =TRUE, transitionMatrix = transitions)
a) i) transitions3 <- transitions%%transitions%%transitions
ii) MC3 <- NCDsystem^3
b) #distribution after n steps
initdist <- c(0.6, 0.2, 0.2)
i) dist3.mmult <- initdist%%transitions3
dist3.mchain <- initdistMC3
assess whether a system is irreducible or aperiodic using
is.irreducible(<markovchain>)
period(<markovchain>)</markovchain></markovchain>
the steady state of a system can be found using
steadyStates(<markovchain>)</markovchain>
generate a sample path for a defined markov chain
rmarkovchain(<n>, <chain>, t0 = "starting state", include.t0 = TRUE)</chain></n>
discountlevels <- c(“low”, “medium”, “high”)
transitions <- matrix(c(etc), nrow = 3, ncol = 3, byrow = TRUE, dimname = list(discountlevels, discountlevels))
NCDsystem <- new(“markovchain”, states = discountlevels, byrow =TRUE, transitionMatrix = transitions)
Generate a 15 step sample path starting in the medium state using a seed of 123
set.seed(123)
rmarkovchain(15, NCDsystem, t0=”medium”, include.t0=TRUE)
how to import a data set called states.csv
download the data set
save to working directory (?)
import using data <- read.csv(“states.csv”, header=TRUE)
using read.csv will import the data as a dataframe, how will we convert the states to a list
list(data$State)
fit a markov chain to a list and obtain an estimate
fitchain <- markovchainFit(listname)
estimate <- fitchain$estimate
what function is used to convert the generator matrix to the transition matrix
generatorToTransitionMatrix()
Create the jump chain (step 1)
consider a three state model with transition intensities: -0.7, 0.1, 0.6, 0.4, -0.9, 0.5, 0.1, 0.6, -0.7
create the generator matrix
convert this to the required transition matrix
generate a 500 step sample path using a seed of 123
step 2 simulate the waiting times
returning to the markov jump process from question 6
extract the parameters for the exponential waiting times from the generator matrix
simulate 500 waiting times using a seed of 79
step 2
states <- c(“state1”, “state2”, “state3”)
generator <- matrix(c(etc), nrow = 3, ncol =3, byrow = TRUE, dimnames = list(states, states)
generator
P <- generatorToTransitionMatrix(generator)
mchain <- new(“markovchain”, transitionMatrix=P, states = states)
set.seed(123)
Samplepath <- rmarkovchain(500, mchain, include.t0=TRUE)
head(Samplepath)
lambda.i <- abs(diag(generator))
lambda.i
set.seed(79)
waiting times <- rexp(500, lambda.i[Samplepath])
head(waiting times)