Series Tests Flashcards
1
Q
nth-term
A
- an
- null
- lim n->inf an != 0
- Cannot be used to show convergence
2
Q
Geometric Series
A
- ar^n
- abs(r)<1
- abs(r)>=1
- Sum: S = a/(1-r)
3
Q
Telescoping Series
A
- (bn-bn+1)
- lim n->inf bn = L
- null
- Sum: S = b1 - L
4
Q
p-Series
A
- 1/n^p
- p > 1
- 0 < p <= 1
- null
5
Q
Alternating Series
A
- (-1)^n-1 * an
- 0<an+1<=an and lim n->inf an = 0
- null
- Remainder: abs(RN)<=aN+1
6
Q
Integral (f is continuous, positive, and decreasing)
A
- an, an=f(n) >= 0
- int(1, inf, f(x)) converges
- int(1, inf, f(x)) diverges
- Remainder: 0 < RN < int(N, inf, f(x))
7
Q
Root
A
- an
- lim n->inf nth-root(abs(an)) < 1
- lim n->inf nth-root(abs(an)) > 1 or =inf
- Test inconclusive if lim n->inf nth-root(abs(an)) = 1
8
Q
Direct Comparison (an, bn > 0)
A
- an
- 0<an<=bn and bn converges
- 0<bn<=an and bn diverges
- null
9
Q
Ratio
A
- an
- lim n->inf abs(an+1/an) < 1
- lim n->inf abs(an+1/an) > 1 or =inf
- Test inconclusive if lim n->inf abs(an+1/an) = 1
10
Q
Limit Comparison (an, bn > 0)
A
- an
- lim n->inf an/bn = L > 0 and bn converges
- lim n-> inf an/bn = L > 0 and bn diverges
- null