Sensory learning and memory formation Flashcards
sensory learning and memory formation (Clark, 2017)
Here, I provide a basic history of important milestones in the development of theories for how the brain accomplishes the phenomenon of learning and memory. Included are the ideas of Plato, René Descartes, Théodule Ribot, William James, Ivan Pavlov, John Watson, Karl Lashley, and others. The modern era of learning and memory research begins with the description of H.M. by Brenda Milner and the gradual discovery that the brain contains multiple learning and memory systems that are supported by anatomically discrete brain structures. Finally, a brief overview is provided for the chapters that are included in current topics inBehavioral Neuroscience—Learning and Memory.
see notes
learning and memory
• Changes in behaviour or emergence of responses that are caused by previous experience
○ Not proof of learning
○ How info is acquired - recalling memories
• Observations:
○ Behav (actions, emotions, knowledge due to experience)
○ Neurons (neural network activity)
○ Synapses (interactions between indv neurons, synaptic plasticity)
§ Learn = change at level of synapse
○ Regulatory and structural genes ((de-)activation, modulation of expression patterns)
§ Build proteins
§ Turn genes on/off - transcription factors - genomic cascades
- Grow more synapses - activate genes
see notes
different forms of learning
• Learning is the process of acquiring new info
• Memory is the ability to store and retrieve info- without this hard to prove learning - decay also important feature - extinction
- Non-associative learning: habituation, sensitisation
- Associative learning: classical and operant conditioning
○ Imprinting
○ Observational learning: imitation, stim enhancement, social learning
- Tool use, play, latent learning, insight, view-based navigation
When does the environment start to influence behavioural development?
• Innateness (fixed/inflexible - cannot unlearn response or learn v. easily) - genetically determined, inherited, unlearned behav actions/responses - vs learning: the nature-nurture fallacy - dichotomy - less relevant now than before - cut off point is birth
• Can have diff types of learning - when, how, diff mechanisms
• Env effects present in some form
• Chickens and ducks can vocalise days before hatching
- Can get light through shell
see notes
- Animals learn before sensory systems mature enough - sustained throughout birth
When does the environment start to influence behavioural development? research
Barbarin et al. (2019)
Barbarin et al. (2019)
Black males experience extraordinary developmental risks as a consequence of the combined effects of male gender, poverty, and race. These risks are reflected in atypical behavioral and emotional development often observed in middle childhood. Not all Black males succumb to these risks. Whether or not they do is a function of exposure to adverse childhood events resulting from poverty, the experience of racial bias, and access to mitigating cultural resources and familial supports. Reducing household poverty and increasing access to early childhood programs, school-based programs, and mentoring are promising interventions to increase the probability of positive outcomes.
Selective breeding of ‘bright’ and ‘dull’ rats for solving a maze task (Tryon, 1940, 1942)
• Artificial selection exp on maze-running ability in rats
• Are maze-bright rats more intelligent than maze-dull rats?
• Variation across individuals
- Clear dichotomy in perf
see notes
• Intelligence can be inherited - genes involved - cannot live without - always active - nothing happens without genes
• How do genes and env interact
- Animals can perform in complicated experiments - small brains - tasks solved in many ways
Selective breeding of ‘bright’ and ‘dull’ rats for solving a maze task (Tryon, 1940, 1942) research
Markowitz and Sorrells (1969)
Markowitz and Sorrells (1960)
Twenty-five descendants of the Berkeley S 1 and S 3 strains of animals were tested in an automated discrimination apparatus with shock as reinforcement. On the four successive ligltt-co”ect and clark-co”ect problems presented, the S3 (“maze-dull”) animals were superior. Some tentative interpretations of the results are presented. It is suggested that the labels “maze-bright” and “maze-dull” are inexplicit and inappropriate for use with these strains.
Environmental conditions can mask genetic differences and produce similar phenotypes (Drickamer et al., 2002)
• Enriched env improved perf of maze-dull rats
• Cooper and Zubeck (1958)
• Does genotypic variance matter for the behav of rats?
○ Depends on type of env - experience, nutrition
- Challenged original exp
see notes
• Diffs less clear - distributed equally in both strains - env caused diff - most strong genetic effects - that string is can be masked?
- Interaction and how - always
Environmental conditions can mask genetic differences and produce similar phenotypes (Drickamer et al., 2002) research
Ravindran et al. (2020)
Ravindran et al. (2020)
Phenotypic variation plays an important role in how species cope with environmental challenges. Pinpointing which genes and genomic regions are underlying phenotypic variability thus helps to understand the processes of acclimation and adaptation. We usedDaphniaas a system to identify candidates playing a role in phenotypic variation related to a predation risk environment with a genome-wide association approach. Furthermore, a gene co-expression network analysis allowed identifying clusters of co-expressed genes which correlated to life history traits. To enhance the understanding of the functional roles of the transcripts, we identified orthologs and paralogs from related species and used ontologies to annotate the candidates of interest. Our study revealed that only one life history trait and two morphometric traits have a genetic association in the presence of predation risk (fish kairomones), whereas most genotype-phenotype associations were detected in a genotype-environment interaction analysis for reproduction-related phenotypic traits. The gene co-expression network analysis identified a total of 44 modules, of which one module correlated to another life history trait namely the ‘total number of broods’. The combined use of gene co-expression network and transcriptome-wide association analysis allowed the identification of 131 candidate transcripts associated with life history traits inDaphnia galeata. These results lay the ground for targeted studies to further understand phenotypic variability in this species.
Are there specialised areas in the brain for storing memories? (Squire and Kandel, 2000)
• Lashley’s search for memory ‘engrams’ (1929, 1950)
• Lesion studies with rats
Lashley concluded that memory not located in particular areas of rat cortex
see notes
• No specific area
• Remove cortex
• Go through maze
• Which parts of brain responsible for diff types of memory?
- Diff areas removed didn’t matter - still errors
Are there specialised areas in the brain for storing memories? (Squire and Kandel, 2000) research
Lashley (1929, 1950)
Lashley
A review of the experimental evidence on neural mechanisms in learning and memory leads to conclusions: (1) “the theory of well-defined conditional reflex paths” is mistaken; (2) there is no demonstrable localization of a memory trace; (3) “associative areas” are not storehouses for memories; (4) “the trace of any activity is not an isolated connexion between sensory and motor elements”; (5) cortical equivalence indicates multiple representation of memories; (6) since all brain cells are constantly active, “no great excess of cells… can be reserved as the seat of special memories.”
Different brain regions are involved in learning and memory (Squire, 2004; Clark, 2019)
• Subcortical (hippocampus, brainstem) areas play imp role in memory formation and recall
- Lesion studies
see notes
• Reflex pathways - brainstem
- Not all cortex - not reflection of intelligence
Different brain regions are involved in learning and memory (Squire, 2004; Clark, 2019) research
Squire (2004)
Squire (2004)
The idea that memory is composed of distinct systems has a long history but became a topic of experimental inquiry only after the middle of the 20th century. Beginning about 1980, evidence from normal subjects, amnesic patients, and experimental animals converged on the view that a fundamental distinction could be drawn between a kind of memory that is accessible to conscious recollection and another kind that is not. Subsequent work shifted thinking beyond dichotomies to a view, grounded in biology, that memory is composed of multiple separate systems supported, for example, by thehippocampusand related structures, theamygdala, the neostriatum, and thecerebellum. This article traces the development of these ideas and provides a current perspective on how these brain systems operate to support behavior.
Learning and memory: Network level
• Learning and memory changes as age
• Newly born neurons (neurogenesis) may aid learning
- Area of encoding and recall diff - shift in brain areas
see notes
Learning and memory: Network level research
Creighton et al. (2020)
Creighton et al. (2020)
The neuronal epigenome is highly sensitive to external events and its function is vital for producing stable behavioral outcomes, such as the formation of long-lasting memories. The importance of epigenetic regulation in memory is now well established and growing evidence points to altered epigenome function in the aging brain as a contributing factor to age-related memory decline. In this review, we first summarize the typical role of epigenetic factors in memory processing in a healthy young brain, then discuss the aspects of this system that are altered with aging. There is general agreement that many epigenetic marks are modified with aging, but there are still substantial inconsistencies in the precise nature of these changes and their link with memory decline. Here, we discuss the potential source of age-related changes in the epigenome and their implications for therapeutic intervention in age-related cognitive decline.
Decline of cell proliferation with chronological age (Amrein, 2015)
• Possibly function in
○ Repair
○ Plasticity
• End of old dogma: new neurons can be born in adult brain - not across whole brain
Occurrence of neurogenesis declines over time and as age increases plasticity and repair decrease
see notes
Decline of cell proliferation with chronological age (Amrein, 2015) research
Kempermann et al. (2015)
Kempermann et al. (2015)
Of the neurogenic zones in the adult brain, adult hippocampal neurogenesis attracts the most attention, because it is involved in higher cognitive function, most notably memory processes, and certain affective behaviors. Adult hippocampal neurogenesis is also found in humans at a considerable level and appears to contribute significantly to hippocampal plasticity across the life span, because it is regulated by activity. Adult hippocampal neurogenesis generates new excitatory granule cells in the dentate gyrus, whose axons form the mossy fiber tract that links the dentate gyrus to CA3. It originates from a population of radial glia-like precursor cells (type 1 cells) that have astrocytic properties, express markers of neural stem cells and divide rarely. They give rise to intermediate progenitor cells with first glial (type 2a) and then neuronal (type 2b) phenotype. Through a migratory neuroblast-like stage (type 3), the newborn, lineage-committed cells exit the cell cycle and enter a maturation stage, during which they extend their dendrites into a the molecular layer and their axon to CA3. They go through a period of several weeks, during which they show increased synaptic plasticity, before finally becoming indistinguishable from the older granule cells.
Adult neurogenesis in both vertebrate and invertebrate brains (Barker et al., 2011)
• Fish, amphibia: neurogenic cells in many brain areas
• Reptiles, birds mammals (more concentrated than fish and amphibia): neurogenesis largely in lateral ventricles and hippocampus (mammals) - cells migrate throughout telencephalon (olfactory bulb, HVC)
• CB - cerebellum
• OB - olfactory bulb
• V - lateral ventricles
• HVC (RA only in songbirds) - cerebral nuclei
- Hp - hippocampus
see notes
Adult neurogenesis in both vertebrate and invertebrate brains (Barker et al., 2011) research
Galed (1984)
Gross (2000)
Galed (1984)
○ “Field observations can point to areas in which organisms express special competences, suggesting the existence either of refinements of known learning processes or previously unsuspected learning mechanisms
○ Lab investigations of plasticity can expand (/limit) the range of acceptable proximal explanations of changes in behav observed in field
Field studies direct lab research on animal learning toward fruitful areas of investigation, while lab research can provide assistance to field workers in understanding the behav and neurobiological mechanisms that might be responsible for acquisition or development of adaptive responses”
Gross (2000)
For over 100 years a central assumption in the field of neuroscience has been that new neurons are not added to the adult mammalian brain. This perspective examines the origins of this dogma, its perseverance in the face of contradictory evidence, and its final collapse. The acceptance of adult neurogenesis may be part of a contemporary paradigm shift in our view of the plasticity and stability of the adult brain.
Can adult hippocampal neurogenesis be linked to the environmental conditions a species lives in? (Cavegn et al., 2013)
• Mole rats live in subterranean tunnel system
- Amongst surface-dwelling rodents, SA rodents live in challenging habitat
see notes
Can adult hippocampal neurogenesis be linked to the environmental conditions a species lives in? (Cavegn et al., 2013) research
Burger et al. (2014)
Burger et al. (2014)
Sex and reproductive status affect hippocampal neurogenesis and dentate gyrus (DG) size in rodents. Relatively few studies, however, address these two effects simultaneously and even fewer studies address this issue in wild populations. Here, we examined seasonal and sex differences in neurogenesis and DG size in a wild, polygynous and social rodent, Richardson’s ground squirrel (Uriocitellus richardsonii). Based on the behavioral ecology of this species, we predicted that both neurogenesis and DG size would be sexually dimorphic and the degree of dimorphism would be greatest in the breeding season. Using unbiased stereology and doublecortin (DCX) immunohistochemistry, we found that brain volume, DG size and number of DCX cells varied significantly between breeding and non-breeding seasons, but only brain volume and the number of DCX labeled cells differed between the sexes. Both sex and seasonal differences likely reflect circulating hormone levels, but the extent to which these differences relate to space use in this species is unclear. Based on the degree of seasonal differences in neurogenesis and the DG, we suggest that ground squirrels could be considered model species in which to examine hippocampal plasticity in an ecologically valid context.
cellular mechanisms of learning: Hebb’s rule (Hebb, 1949)
• Learning changes properties of synaptic transmission
• “When an axon of cell A is near enough to excite a cell B and repeatedly/persistently takes part in firing it, some growth processes/metabolic change takes place in one/both cell such that A’s efficiency, as one of the cells firing B, is increased”
• Neurons connected to indv units
• Hebbian synapse
- Still central idea in neuroscience
Hebb synapse
• Cajal (1893) first proposed the idea that the site of contact between neurons could play a role in memory formation - retain info
• Foster and Sherrington (1897) termed these sites ‘synapses’
- Change behav - change something in neuron
see notes
• Hebb emphasised that there are likely to be many Hebb synapses in distributed networks
• Particular association formed
- Form memory - change way neurons paired
see notes
Hebb synapse research
Hinton (2003)
Hinton (2003)
Modelers have come up with many different learning rules for neural networks. When a teacher specifies the correct output, error-driven rules work better than pure Hebb rules in which the changes in synapse strength depend on the correlation between pre and postsynaptic activities. But for unsupervised learning, Hebb rules can be very effective if they are combined with suitable normalization or “unlearning” terms to prevent the synapses growing without bound. Hebb rules that use rates of change of activity instead of activity itself are useful for discovering perceptual invariants and may also provide a way of implementing error-driven learning.
Simple neuronal model: Aplysia californica
• Marine snail, sea hare
• Ca 20,000 neurons - identify indv neurons
• Body plan not segmented
• Sensory neurons innervate mantle, gill and siphon
• Gill can retract to protect it - imp response - controlled by ab ganglion
• Gill has fine tissue - sensitive to damage - external lining - filters water - fac transfer of O2
• Siphon - lots of muscles - contract - regulate breathing
• Neurons originate from ganglia
• Flap mantle shelf to swim
- Ganglia = ‘brain’
see notes
Simple neuronal model: Aplysia californica research
Alexandrescu and Carew (2020)
Alexandrescu and Carew (2020)
The formation of appropriate neural connections during development is critical for the proper wiring and functioning of the brain. Although considerable research suggests that the specificity of synapse formation is supported by complex intercellular signaling between potential presynaptic and postsynaptic partners, the extracellular factors and the intracellular signal transduction pathways engaged in this process remain largely unknown. Using the sensory-motor neural circuit that contributes to learning in defensive withdrawal reflexes in Aplysia californica, we investigated the molecular processes governing the interactions between sensory neurons and both target and non-target motor neurons during synapse formation in culture. We found that evolutionarily-conserved intercellular and intracellular signaling mechanisms critical for learning-related plasticity are also engaged during synaptogenesis in this in vitro model system. Our results reveal a surprising bidirectional regulation of molecular signaling between sensory neurons and non-target motor neurons. This regulation is mediated by signaling via both paracrine and autocrine diffusible factors that induce differential effects on transcription and on protein expression/activation in sensory neurons and in target and non-target motor neurons. Collectively, our data reveal novel molecular mechanisms that could underlie the repression of inappropriate synapse formation, and suggest mechanistic similarities between developmental and learning-related plasticity.
Homo- and heterosynaptic plasticity (Kandel,2000?)
• A - presynaptic neuron
• B - postsynaptic neuron
• C - modulatory interneuron
• Homosynaptic = Hebbian synapse - change by augmenting signal
○ Changes in B - changes in A can lead to changes in B
○ Depression test = habituation
○ Fac test = potentiation
• Heterosynaptic - Aplysia
- Change in B without post-synaptic changes
see notes
Homo- and heterosynaptic plasticity (Kandel,2000?) research
Arami et al. (2013)