Section 5 - Materials Flashcards
What is density?
The mass of a material per unit volume.
What is the equation for density?
Density (kg/m³) = Mass (kg) / Volume (m³)
p = m / v
What is the symbol for density?
ρ - rho (looks like a ‘p’)
What are the units for density?
g/cm³ or kg/m³
Convert 1 g/cm³ to kg/m³.
1 g/cm³ = 1000 kg/m³
Is density affected by size or shape?
No, just the material.
What determines whether a material floats?
- The relative average densities.
* If a solid has a lower density than a fluid, it will float in the fluid
What is the density of water?
1 g/cm³ (which is 1000 kg/m³)
What is Hooke’s law?
- The extension of a stretched object (Δl) is proportional to the load (F) until the limit of proportionality.
- F = k x Δl
What is the equation for Hooke’s law?
Force (N) = Stiffness constant (N/m) x Extension (m)
F = k x Δl
What are the units for the spring constant, k?
N/m
What is k?
- The stiffness constant for a material being stretched
* With springs, it is usually called the spring constant
Describe the forces acting on a metal wire being stretched by a load.
- Load pulls down on the end of the wire with force F
- Support pulls up on the top of the wire with an equal reaction force R
- F = R
Does Hooke’s law only work for tensile forces?
No, it also works for compressive forces.
What things obey Hooke’s law?
• Springs
• Metal wires
• Most other materials
(Up to a point!)
What types of forces does Hooke’s law work for?
- Tensile (stretching)
* Compressive
Does Hooke’s law involve just one force?
- No, there must be two equal and opposite forces at the ends of the object.
- They can be tensile of compressive.
Is the value of k the same for tensile force as it is for compressive forces?
And it what materials?
- In springs - the same.
* In other materials (and some springs) - not always because some can’t compress
A material will only deform (stretch, bend, twist, etc.) there are …… acting on it
…there’s a pair of opposite forces acting on it.
Describe the forces acting on a fixed spring that has a compressive force acting on the base.
- The compressive force, F, pushes up onto the spring
- The support exerts an equal and opposite reaction force, R, down onto the spring
- F = R
How is Hooke’s law illustrated on a graph?
- Graph of force (y) against extension (x)
* Gradient of straight part is the value of k
When does Hooke’s law not work?
It stops working when the force is great enough (the limit of proportionality).
Why is a force-extension graph plotted with extension on the x axis?
So that the gradient gives k.
Describe the force-extension graph for a typical metal wire.
- Straight-line from origin up to the limit of proportionality (P)
- Line curves slightly towards x-axis up to elastic limit (E)
- Line curves more towards the x-axis