Scikit & Pandas Flashcards
sklearn.preprocessing.MinMaxScaler
Transform features by scaling each feature to a given range. This estimator scales and translates each feature individually such that it is in the given range on the training set, e.g. between zero and one.
sklearn.preprocessing.StandardScaler
Standardize features by removing the mean and scaling to unit variance
sklearn.preprocessing.normalize
Scale input vectors individually to unit norm (vector length).
sklearn.preprocessing.LabelEncoder
Encode target labels with value between 0 and n_classes-1. This transformer should be used to encode target values, i.e. y, and not the input X
sklearn.preprocessing.OneHotEncoder
Encode categorical features as a one-hot numeric array.
sklearn.preprocessing.binarize
Boolean thresholding of array-like or scipy.sparse matrix.
pandas.melt
Unpivot a DataFrame from wide to long format, optionally leaving identifiers set. pandas.melt(frame, id_vars=None, value_vars=None, var_name=None, value_name=’value’, col_level=None, ignore_index=True)