S2: Mechanics of Breathing Flashcards
Why do we need a respiratory system?
Cells require energy to function and aerobic respiration provides this energy as ATP. This requires O2 and produces CO2.
The atmosphere provides a source of O2 and CO2 can be expelled. Our bodies are too large rely on diffusion of gases from the atmosphere to tissues and evolution of the respiratory system overcomes this problem.
Functions of the respiratory system
- Provides and ventilates a specialised surface where gas exchange can take place
- Contributes to acid base balance (e.g. PH of the blood)
- Communication
- Metabolism
How does oxygen get from the atmosphere into cells?
- O2 inhaled from atmosphere into alveoli within the lungs
- O2 diffuses from alveoli into blood within pulmonary arteries
- O2 transported in blood mostly bound to haemoglobin
- O2 diffuses into cells/tissues for use in aerobic respiration
- CO2 diffuses from respiring tissues to blood to be exchanged at the lungs
Why is ventilation of gas exchange structure necessary?
Tissues continually demand O2 and produce CO2. An adequate concentration gradient between alveolar air and blood is required for efficient gas exchange (diffusion).
Therefore fresh air is required from the atmosphere to ensure alveolar oxygen pressure.
Alveolar O2 pressure is high and alveolar CO2 pressure is low relative to blood.
How do gases move?
Gases naturally move from (connected) areas of higher pressure to lower pressure until an equilibrium is re-established.
At equal pressure, an equilibrium is established.
Explain the Ideal gas law and Boyle’s law
Ideal gas law:
PV= nRT Pressure = the number of gas molecules within a given volume
Boyle’s law:
p = n/v
If the n remains constant, increase in volume = decrease in pressure
What causes the movement of air in and out of lungs?
This is achieved by changing the volume of the thoracic cavity
Explain inspiration (active)
- Respiratory muscles (e.g. diaphragm) contract
- Volume of thoracic cavity increases
- Alveolar pressure decreases below atmospheric pressure
- Air moves down pressure gradient, through airways into alveoli, expanding the lungs
Explain expiration (passive)
- Respiratory muscles (e.g. diaphragm) relax, lungs recoil due to elastic fibres and deflate
- Volume of thoracic cavity decreases
- Alveolar pressure increases above atmospheric pressure
- Air moves down pressure gradient into atmosphere deflating lungs
How are the lungs and chest indirectly attached?
Pleural cavity
What is the pleural cavity?
The pleural cavity is the fluid filled space between the membranes (pleura) that line the chest wall (parietal pleura) and line each lung (visceral pleura).
Pleurae also provide a frictionless surface to aid movement of the lungs.
Explain the negative pressure in pleural cavity and ‘pleural fluid bond’
The opposing elastic recoil of the chest (outwards) and lungs (inwards) generates negative pressure within the pleural cavity.
The pleurae is prevented from seperating by the ‘pleural fluid bond’.
If the recoiling forces of the lungs and chest wall hypothetically disappeared, the molecules within the pleura cavity will occupy a certain volume, generating a certain pressure (equal to the atmosphere).
What happens if negative intrapulmonary pleural pressure is lost?
Intrapleural pressure is naturally sub-atmospheric due to the opposing recoil of the chest wall and lungs
- Piercing either of the pleura will cause air to enter the space (pneumothorax) from either the lungs or atmosphere, depending on the injury
- Negative intrapleural pressure is lost and as the chest wall and lung are no longer indirectly attached, they will recoil in opposite directions causing the lungs to collapse (atelectasis)
Compare open and closed pneumothorax
Pneumothorax causes affected part of the lung to collapse due to elastic recoil
Open pneumothorax is a hole in the parietal pleura and closed pneumothorax is piercing the visceral pleura.
How is pneumothorax treated?
Pneumothorax is treated by removing air from the pleural cavity and re-establishing negative intrapulmonary pleural pressure (Pip).