RV and their distributions (week 5) Flashcards
Continuous Random Variable corner is
smooth or differentiable
What is the derivative of CDF?
Measure probability of an interval
use integral max b and low a.
Properties of PDF (2)
- non negative
- area under PDF must be 1
Expected value of continuous RV
E(X) = integral max infinity and min neg infinity of xf(X)dx
Using LOTUS find g(X)
E(g(X)) = integral max infinity and min neg infinity of g(x)f(X)dx
CDF of unif var
integral max x and min a of 1/b-a dt = (x-a)/(b-a)
min and maxnya bebas ya pokoknya dikurang di atasnya
mean of unif var
(b+a)/2
var of unif var
(b-a)^2/12
location-scale transformation
X ~ Unif(a,b) -> Y = c+dX ~ Unif(c + ad, c +bd)
The importance of the Uniform Dist
- If U ~ Unif(0,1) then X = F^(-1) (U) is a RV with CDF F
- If X is a RV with CDF F, then F(x) ~ Unif(0,1)
Central Limit Theorem
Sum of very large number i,i,d RV is approx normal
What is Z? given N(µ, σ)
(X-µ)/σ
exponential RV?
E(X) = 1/lamda
Var(X) = 1/lamda^2
What if ask
a. P(Z<1.33)
b. P(Z<-0.79)
c. P(Y <0.33) where Y = 0.5Z-1
a. 0.5+P(0<Z<1.33)
b. 0.5-P(0<Z<0.79)
c. Y + 1 = 0.5Z
Z = (Y+1)/0.5 = 2(y+1)
so, P(2(Y+1) < 2x(1+0.33))